Efficient manufacturing with TRUMPF laser solutions

Laser material processing is an excellent choice if you are looking for a manufacturing process that is resource-efficient and cost-effective. Simply adjust the process parameters to match the specific material and application and the result is an extremely stable and reproducible laser process which offers consistently high processing quality and precision – whatever the batch size. Laser processing is a highly accurate, non-contact solution which minimizes the thermal and mechanical stresses on the material, thereby reducing or even eliminating the need for rework or further processing. In fact, laser material processing offers clear advantages along the entire process chain – from cutting and welding to the marking of finished parts.

The TruLaser Station 3003 is a superb example of how to make a laser system flexible, economical and ergonomic. When it comes to welding delicate, temperature-sensitive parts such as those used in electronics manufacturing, the TruLaser Station 3003 is an excellent choice to combine with a pulsed laser. This combination is typically used for spot welding, in which parts are joined together into complete assemblies by means of a series of individual weld spots. Very little heat is introduced in this process, so distortion is kept to an absolute minimum. This is just one of the advantages of using programmable focusing optics and a laser light cable for beam guidance. Thanks to the integrated scanner optics, it is not necessary to move either the workpiece or the optics during processing. Pulsed lasers which incorporate a ‘burst function’ work even faster than standard solutions – for example, TruPulse lasers weld electrical contacts to switches three times faster than comparable pulsed lasers without a burst function. To do this, TruPulse lasers can increase their average power briefly, using the workpiece transfer time to recharge their stored energy. The result is a reduction in welding time and a shorter overall processing cycle. The TruLaser Station 3003 is a versatile system that is also suitable for larger parts. Despite its compact dimensions of 860 x 2,000 x 1,310 mm, the laser workstation has a large working range of 300 x 300 x 500 mm. Its automatic doors with programmable opening height provide a fast and ergonomic solution for workpiece loading. Flexibility is also a feature when it comes to choosing a beam source – the TruLaser Station 3003 can be combined with disk, diode or fiber lasers up to an output of 1,000 watts.

Whatever type of parts you are manufacturing, the ability to trace individual parts is a requirement that affects many different industries. This is where laser marking offers some major benefits. TRUMPF marking lasers can be used to label all standard materials – from sheet metal to plastic and glass. TRUMPF offers marking lasers in the wavelengths 1064 nanometers (infrared), 532 nanometers (green) and 355 nanometers (ultraviolet). These are available in various power ranges to cater to the requirements of different marking applications. Unlike adhesive labels, laser marking produces inscriptions that stand the test of time, offering results that can still be read even after the part has been delivered to the customer. To make it even easier to use its marking lasers, TRUMPF has become the first laser manufacturer to introduce a method of directly connecting a marking laser to the SAP environment via a standard interface. The connection is established using the driver interface for printers included in the SAP® Printer Vendor program. The marking laser takes on the role of a printer, making laser marking as easy as printing. The marking software package includes the laser parameters required for a wide range of materials.

For more information, visit: www.trumpf-laser.com/index.php?id=583&L=1

Read 2273 times

Rate this item
(2 votes)

Copyright © 2019 Prototype Today ®. All rights reserved.

|   Privacy Policy |   Terms & Conditions |   Contact Us |

All trademarks and registered trademarks are the property of their respective owners.

Additive Manufacturing Today