Ogle Models announced they were asked to create two unique phones and base chargers for British Telecom (BT) by design firm Alloy.

The models required intricate detailing for the buttons and integrated lighting for the base charger, which have never before been seen on the market.

Industrial Designer at Alloy Matt Harris said: “After paying a visit to Ogle, we were impressed by the range of equipment, the breadth of materials and processes they were able to perform and replicate. It was a pleasure to work with Ogle.

“The determination of the team to deliver exactly what we wanted, and the openness to try new or different processes, is what sets them apart from others.”

The finished version of the revamped BT DECT cordless telephone range needed to reflect the premium nature of the products for potential buyers.

In order to create the highest quality of parts needed for the project, Ogle used the Stereolithography (SLA) process which is so accurate it can meet measurements as small as ±0.1 mm per 100 mm.

To produce the brush metal effect, which was required for phones, Ogle also had to experiment with different techniques.

Mr Harris added: “The fine-spun finish turned out to be quite difficult to replicate on the model, but the team at Ogle tried several approaches until they found the one that most accurately matched our reference sample. They even ordered additional tools for this part to achieve the best finish.”

The base units for the phones had to incorporate a blue LED light to deliver a glow to the base of the phone.

To avoid spots of light, the model making team at Ogle created a reflective funnel to sit within the base unit to deliver an even distribution of light. The team then applied the battery pack, switch and mock USB sockets.

Dave Bennion, Marketing and Sales Director at Ogle, said: “It was a huge honour to work with the guys at Alloy on models for BT’s premium phone range. Being such a high quality product we knew we needed to deliver a superior surface finish. Dean Lear our Project Manager, was key to getting this detail right.

“As the handsets would be part of the high-end DECT range, there were several processes and material finishes required that had not previously been used on the phones and required patience and accuracy, which we believe eventually paid off.”

Kinneir Dufort, a Bristol-based design consultancy, helped the University of Bristol achieve a new world record for wireless spectral efficiency with a precision prototype antenna array. This result improves upon the original world record set by the university in March, as well as a recent report from Facebook, who have also been conducting research in this area.

Working with the team of 5G researchers from Bristol University, Sweden’s Lund University and National Instruments, the experts at Kinneir Dufort designed and built the intricate, multi layered components for the experimental devices.

Multiple antenna technology, referred to as MIMO, is already used in many Wi-Fi routers and 4G cellular phone systems. Normally this involves up to four antennas at a base station, but the Bristol Massive MIMO configuration had 128, each one hand assembled.

To meet the needs of the future the internet will need to be able to achieve instant data transfers and to meet this 5G function will require a 1000-fold increase on existing capabilities. The results in this experiment are one step closer towards finding out how to achieve this.

The project is part of Bristol Is Open, a joint venture between Bristol City Council and the University of Bristol, a research infrastructure to explore developments in software, hardware and telecom networks that enable more interaction between people and places and more machine-to-machine communication.

Paul Harris, Communications PhD Candidate Centre for Doctoral Training in Communications from the University of Bristol said of the work “Kinneir Dufort’s innovative ideas, attention to detail and extremely accurate hand finished construction resulted in a design that provides not only the desired performance for our measurements, but is robust and adaptable to our future needs.”

Ian Hollister, Development & Prototyping Director at Kinneir Dufort knows the importance of accuracy and attention to detail. “We have state of the art prototyping laboratories at KD. In them we have the very latest in 3D print and CNC machinery, but this is backed up by the high levels of skill and mechanical knowledge in our Team needed to deliver the accuracy required for a project like this.

The new world record, set on May 11th, served 22 users in the same time-frequency resource, equating to a spectral efficiency of 145.6 bits/s/Hz, each modulated with 256-QAM, on a shared 20 MHz radio channel at 3.51 GHz with a 128-anntenna MIMO array – basically, that is internet 22 times faster than any 4G capabilities you can get today!

Published in Kinneir Dufort

Use of the X1000 3D printer from German RepRap has enabled TAKATA PlasTec GmbH to now considerably reduce development costs and time for prototype production. The samples have to be made quickly and inexpensively so that the customer can then use them for concept examinations. These are used to create equipment and supports for production simply and quickly. “The costs for the external value added are reduced and it is now possible to create parts which were previously unjustifiable due to the prohibitively high costs involved,” reports Kevin Rogers, manager of Application Engineering at TAKATA PlasTec GmbH.

The particular challenge when printing large components is the optimum print preparation. Run times can be kept to a minimum here by the skillful arrangement and positioning of the parts in the build envelope in order to thus improve the quality of the print result. “The X1000 is the first printer that is optimized for industrial use and covers the dimensions required for TAKATA components. Our many years of experience in the field of 3D printing has certainly helped here and we are pleased that TAKATA has chosen our X1000,” explains Florian Bautz, CEO of German RepRap GmbH.

TAKATA PlasTec GmbH is a development and series supplier for interior and exterior plastic systems in the automotive sector and serves customers like Daimler AG, SCANIA, DAF. This includes door panels, interior and exterior trims  for trucks or plastic housing sections for consumer electrical equipment. Thanks to the 3D printer, sample parts can be created during development in order to implement installation trials or concept tests in-house or at the customer.

For more information, visit: www.germanreprap.com

Published in German RepRap

When Sibelloptics co-founder Steve Vetorino and his team required a robust, lightweight enclosure for a key feature of their Windimager® LIDAR wind measurement system capable of withstanding extreme temperatures anywhere on earth, they turned to Axis Prototypes, a company specializing in 3d printing and rapid prototyping. Comprising one of four main subsystems of the LIDAR (a remote sensing technology for measuring wind speed and direction by illuminating particles in the air with a laser and analyzing the reflected light), the hemispherical scanner for which the parts were printed, outputs a low-power, omnidirectional infrared laser beam consisting of a series of amplified pulses. Data regarding the frequency and range of the returning light (Doppler shift) is obtained by the system’s detectors and sophisticated software. Ultimately, highly detailed maps are created showing wind speed and direction at various distances. The field-tested Windimager® boasts a range of 10 km and can continuously monitor winds in a volume of atmosphere consisting of more than 2 trillion cubic meters.

Designed to protect the mirrors, motors, and slip-rings of the scanner, the parts were printed in Nylon using SLA technology and consist of a 24-inch diameter dome and a 9-inch diameter cowling. The parts were then primed and painted for aesthetics.

Due to the size and geometric intricacies of the parts, Steve conceded that the only way to produce them cost-effectively and to spec was through additive manufacturing:  “Given the large size and internal features of the printed scanner enclosure parts, I know of no other means to create them other than through 3d printing.”

After a year in operation and being subjected to temperatures ranging from -17°F to +100°F at Sibelloptics’ testing facility in Berthoud, Colorado, the parts have met if not exceeded the client’s expectations.  Steve commented that, “The 3D printed nylon dome and cowling have survived without a scratch, chip or dent. Without a doubt, the Dome and Cowling have exceeded our greatest expectations; their durability and resilience are truly remarkable! These features coupled with their light weight, great appearance, and cost effectiveness are why we will continue to use 3d printing technology for all future systems.”

Based in Montreal, Canada, Axis Prototypes provides 3d printing and rapid prototyping services to support low-cost, low-volume manufacturing operations across numerous markets, including aerospace, aeronautics, automotive, sporting and consumer goods, dental and medical, architecture, and telecommunications. Axis Prototypes operates production grade 3d printers to produce conceptual and functional prototypes from various polymer and metallic materials based on additive manufacturing technologies such SLA, DMLS, SLS, and FDM. Axis is a distributor of 3D SLA printers from Prodways, a leading 3d printer manufacturer in Europe. For more information, visit www.axisproto.com

Established in 2011, Sibelloptics of Boulder, Colorado provides robust remote sensing platforms that serve a variety of industries. Their staff has more than 100 years combined experience in developing state-of-the-art Lidar transceivers, telescopes, high energy lasers, and long range chemical detection sensors. Their first Windimager, delivered in February of 2014, was built for NASA to study aircraft wake turbulence.  Their second system was recently installed on the island of Aruba to predict winds approaching a wind farm power installation. For more information, visit www.sibelloptics.com

Published in Axis Prototypes

3D printers are becoming increasingly common. Architects, technicians, designers and inventors all make use of this technique to create the most beautiful and complex shapes in the blink of an eye. But not only professionals spend their time printing in three dimensions. A growing amount of consumers buy 3D printers or visit ‘FabLabs’ where these printers are publically accessible.

There are websites with countless 3D designs available for download so people can easily print other people’s vase, toy car or iPhone case. But wouldn’t it be more fun to create your own designs? Most definitely, yet designing and printing your own objects requires specific knowledge of complex 3D design programs. Rick Companje, founder of Doodle3D also ran into this problem.

A Media technology graduate and co-founder of Globe4D and FabLab Amersfoort, Rick is at the frontier of many new technologies. In this Dutch Fabrication Laboratory he spends his time lasercutting, CNC milling and working with other digitally driven tools. Though his results with the 3D printer were limited by his little experience with 3D design software.

For this reason Rick started developing Doodle3D, a very simple sketching tool with which anyone can bring their hand-drawn drawings come to life with a 3D printer, but without having the steep learning curve of 3D CAD programs.

It works like this; you make a drawing on a tablet, smartphone or computer, connect the Doodle3D WiFi Box to the 3D printer, and with the press of a button your drawing is sent to the printer. The printer builds, layer for layer, the 3D model out of heated plastic, which immediatly cools and solidifies into a rigid 3D shape. The beauty of it is that your Doodle will be completely unique! But you can do more with Doodle3D. A simple starting shape – like a circle – can be extruded, turned, twisted and bent into a spatial 3D object. This way your flat 2D drawing becomes an interesting 3D object with very few actions.

In order to finish the development of Doodle3D and share it with the world the Doodle3D team is launching a campaign on kickstarter. By pledging for the Doodle3D project backers can receive one of our WiFi Boxes, or a different reward and support the development of this project. The raised money will be used by the team to facilitate Doodle3D’s compatibility with every mainstream OS and every 3D printer, and of course make the rewards a reality! Accessible 3D printing for everyone!

For more information, visit: www.doodle3d.com

Published in Doodle3d

Global athletic leader New Balance is proud to announce a significant advancement in the use of 3D printing to customize high performance products for athletes.   Utilizing a proprietary process, the brand is able to produce spike plates customized to the individual needs and desires of their elite athletes.   At the New Balance Games in January 2013, Team New Balance athlete, Jack Bolas, became the first ever track athlete to compete in customized, 3D printed plates.

New Balance has developed a proprietary process for utilizing a runner's individual biomechanical data to create hyper-customized spike plates designed to improve performance.  The process requires race simulation biomechanical data which the New Balance Sports Research Lab collects using a force plate, in-shoe sensors and a motion capture system.   Advanced algorithms and software are then applied to translate this data into custom 3D printed spike designs.

For the production of the custom plates, New Balance uses selective laser sintering (SLS) to convert powder materials into solid cross-sections, layer by layer using a laser.  SLS printing enables the customization process by allowing for complex designs that could not be achieved through traditional manufacturing methods.  Additionally, SLS printing greatly accelerates the turnaround time from design to functional part.

"Utilizing our Team New Balance Athletes to develop the customization process was extremely helpful", says Sean Murphy, New Balance's Senior Manager of Innovation and Engineering.   "We are impressed with their precise ability to identify and speak to the differences in the custom options provided.  They are acutely aware of what is happening in their shoes".

NB Athletes involved in the development of this process included: 2008 and 2012 US Olympic Athlete and current 1500m World Champion gold medalist Jenny Barringer Simpson, 2012 US Olympic Athlete Kim Conley, 2012 Great Britain Olympic Athlete Barbara Parker and 4 time All-American runner in the 800m, 1500m and the Mile Jack Bolas. These athletes provided key feedback in order to develop spike plates that spoke to each individual athlete's personal preference, biomechanics and specific race needs.

In addition to printing semi-rigid parts like spike plates for track runners, New Balance is working on softer SLS printed components that mimic the cushioning properties of foam midsoles.  This initiative will be critical to bringing the customization process to a broader audience of athletes .   

"With 3D printing we are able to pursue performance customization at a new level to help our elite NB athletes and eventually all athletes. We believe this is the future of performance footwear and we are excited to bring this to consumers," says New Balance President and CEO Robert DeMartini. "As the only major athletic brand to manufacture shoes in the U.S., we are proud to invest in American workers.    Developing our printing capabilities could ultimately help us further invest in the American worker by adding highly technical positions to our already skilled labor force in Massachusetts and Maine."

New Balance, headquartered in Boston, MA has the following mission: Demonstrating responsible leadership, we build global brands that athletes are proud to wear, associates are proud to create and communities are proud to host. New Balance is currently the only athletic shoe company that manufactures footwear in the U.S. with 25% of our U.S. footwear shipments produced at five New England facilities. The company also operates a manufacturing facility in Flimby, U.K. New Balance employs more than 4000 associates around the globe, and in 2012 reported worldwide sales of $2.4 billion.

For more information, visit: www.newbalance.com

Published in New Balance

Worldwide, 1.3 billion people lack electricity, according to the International Energy Agency. More than an inconvenience, this means working and learning all but stop when the sun goes down. Reading, washing and sewing require burning expensive fuel for light. News that could travel via radio, phone or Internet never reaches these regions. In sub-Saharan Africa, the least electrified part of the world, 70 percent of people live in the dark. Other unwired regions include parts of rural Asia, Latin America and the Middle East.

In these same regions, where infrastructure is sparse, one form of transportation stands out as efficient, simple and cheap: the bicycle. Bikes are popular in developing countries, and anywhere bike wheels are turning — from farm to village, from home to school and back — they’re creating rotational energy.

That fact made gears turn in the mind of mechanical engineer and high school teacher Chris Bond. Why not harvest this rotational energy, just like those 1950s bike generators that let cyclists power their own bike lights?

Bond acted, founding Designs for Hope, a nonprofit of three engineers (Bond plus an electrical engineer and a civil engineer). The group set out to design an inexpensive, durable device that would hold a generator on a bike, harvest its power and condition the electricity to feed a battery. They began making prototypes on a Dimension 3D Printer.

To succeed, the bike generator needs the same qualities that make the bike itself so popular: affordability, simplicity and durability. “There are no parts around the corner for a battery holder in Uganda. So we have to be prepared to produce something extremely durable,” Bond says. “That is the life of an engineer. Reducing cost and maintaining quality.”

The initial design had some flaws. “As we were printing out our first idea, holding it and putting it next to a bicycle, I thought, ‘Um, this isn’t going to work!’” Bond said. Tweak after tweak in Bond’s basement, the team kept improving the generator and testing it on a bike. The design now stabilized in its fifth iteration, Designs for Hope has worked with missionary networks to place eight 3D-printed test units in the field.

One recipient is a Uganda orphanage whose only power comes from a small solar-panel system. Orphanage workers commute seven to ten kilometers daily by bike. Once at work, they charge their cell phones from the solar panels, gobbling up limited power. Bond hopes his device alleviates this problem.

“The beautiful thing is, they’re using their bikes anyway,” he says. “It’s a free energy.” Beyond cell phones, which are in high demand in developing countries, Bond says the device’s battery can power many small electronics that don’t require high resistance. As he rattles off the possibilities, he reveals his genuine desire to use his engineering skills to improve lives. Kids can do their chores by electric light at night, freeing daytime hours to attend school. Radios can carry vital news to politically unstable regions. Entrepreneurialism could spring up on a micro scale as energy becomes available for hair clippers and evening handiwork. Firewood can be reserved for heat, no longer burned for light. This in turn means cleaner, safer indoor environments and reduced strain on natural resources.

Bond wants to bring more engineers to his team, and says the bike generator is just the first of many products he hopes to develop with the goal of bettering impoverished lives. “People always say, ‘Become an engineer so you can make lots of money,’” Bond says. “I say become an engineer and you can change the world.”

For more information, visit: www.designsforhope.org

Published in Stratasys

Working under the open sky – it sounds enticing, but it’s seldom really a practical option. Now, a dynamic luminous ceiling brings the sky into office spaces by creating the effect of passing clouds. This kind of lighting generates a pleasant working environment.

As the wind swiftly blows clouds across the sky, the light is in a constant state of change. The feeling of spaciousness and freedom we experience outdoors is exactly what researchers from the Stuttgart-based Fraunhofer Institute for Industrial Engineering IAO replicate indoors: a luminous ceiling that extends across the entire room simulates lighting conditions which resemble those produced by passing clouds – conveying the impression that you are sitting outdoors.

The innovative luminous ceiling, which was developed by the Fraunhofer researchers in close collaboration with their partners at LEiDs GmbH, consists of 50cm by 50cm tiles. “Each tile comprises an LED board with 288 light emitting diodes (LEDs),” states Dr. Matthias Bues, head of department at the IAO. “The board is mounted on the ceiling. A diffuser film in matt white is attached approximately 30cm beneath the LEDs and ensures that the individual points of light are not perceived as such. This diffuser film creates homogenous lighting that illuminates the room throughout.” The researchers use a combination of red, blue, green and white LEDs in order to produce the full light spectrum. This combination makes it possible to generate more than 16 million hues. What’s more, the white LEDs are more energy efficient than the colored lights, which keeps the energy costs to a minimum.

The main focus in developing the virtual sky was to simulate natural lighting conditions on a cloudy day. To achieve this goal, the researchers carefully examined natural light to find out how – and how quickly – the light spectrum changes when clouds move across the sky. “The LEDs allow us to simulate these dynamic changes in lighting in a way that is not directly obvious to the naked eye. Otherwise the lighting might distract people from their work. But it does need to fluctuate enough to promote concentration and heighten alertness,” says Bues. The results of a preliminary study indicate that users find this dynamic lighting to be extremely pleasant. The study involved ten volunteers who carried out their daily work over the course of four days under these lighting conditions with a lighting surface of 30cm by 60cm. Throughout the first day, the lighting remained static. On the second day, it fluctuated gently, and on the third day the fluctuations were rapid. On the fourth day, the participants could choose which type of lighting they wanted, and 80 percent opted for the fast, dynamic lighting.

A prototype of this virtual sky has now been developed that contains a total of 34,560 LEDs spanning an area of 34 square meters. At full power, the “sky” lights up with an intensity of more than 3,000 lux, but 500 to 1,000 lux is sufficient to create a comfortable level of lighting.

From March 6 -10, 2012 at the CeBIT trade fair in Hannover, the researchers will be exhibiting a 2.8m by 2.8m virtual sky at the joint Fraunhofer booth in Hall 9, Booth E 02. Initial inquiries regarding the new lighting have already come in, mainly for use in conference rooms. The virtual sky currently costs approximately 1,000 euros per square meter, but this price will come down, since the more units are produced, the more cost-effective each luminous ceiling will be.

For more information, visit: www.fraunhofer.de or www.cebit.de

Published in Fraunhofer

In the first four years after Industrial Plastic Fabrications (IPF) bought its first Objet 3D printer, IPF’s rapid prototyping business sky-rocketed from 0 customers to 360. Now, another four years on, the UK-based service bureau continues to rely on Objet 3D printers, and its rapid prototyping business has continued to grow at a very healthy pace.

Today, IPF offers a broad range of machining and fabricating services using varied technologies, but all its rapid prototyping work is produced by its two Objet 3D printers – an Objet Connex500 multi-material 3D Printer for printing parts and assemblies made of multiple different materials on the same print job and for simultaneously printing of multiple different, multi-material parts; and an Objet Eden350V Professional 3D Printer.

“With Objet, we can turn models around quickly, efficiently and with consistency,” says Gary Miller, Head of 3D Printing and Rapid Prototyping at IPF. “And our clients like it that they can get a very clear idea of their final product, due to the high accuracy and the model quality and the combination of different materials in a single model.”

According to Miller, the results are nothing short of amazing. When Miller showed a customer a bicycle chain with interlocking, moveable pieces that had been printed in a single run on the Objet Connex multi-material 3D printer, the customer immediately asked how long it took to assemble. Miller told him: “There’s no assembly. It’s printed in one go; you clean it and then you can move it.”

Being able to simultaneously print numerous multi-material parts made of different material properties is highly valuable to IPF. Miller says: “We can print parts that are 40 Shore, 50 Shore, 95 Shore, rigid and flexible parts – all in one go. Four or five customers can want models with different materials and we can print them on the bed at the same time, thanks to Objet’s unique multi-material Connex technology.”

Much of the 3D printing work at IPF takes place overnight or over the weekend, completely unattended. Before leaving the office in the evening, the operator simply sets the Objet 3D printers to start printing; the next morning, he comes into work, cleans the finished parts, and the parts are ready to be shipped out to customers by the end of day. And it happens day after day, week after week.

“We can’t afford for our printers to be down at all,” says Miller. “Objet 3D printers are very reliable machines and the only reason we’ve reinvested in Objet is because the service and support when it’s been needed has been phenomenal.”

Industrial Plastic Fabrications Ltd., located in Essex, UK, offers high-quality machined, formed and fabricated plastic components, plus rapid prototyped parts and 3D printing to the very best standard in the industry. Established in 1969, IPF has over 40 years worth of experience to draw from and its expertise is renowned within the industry. The company’s precision machined, fabricated or formed components provide crucial parts for equipment used within the pharmaceutical, medical, aerospace, automobile, security, audio and broadcasting industries.

For more information, visit: ipfl.co.uk or www.objet.com

Published in Objet

Tiny aerial vehicles are being developed with innovative flapping wings based on those of real-life insects.

Incorporating micro-cameras, these revolutionary insect-size vehicles will be suitable for many different purposes ranging from helping in emergency situations considered too dangerous for people to enter, to covert military surveillance missions.

Supported by the Engineering and Physical Sciences Research Council, world-leading research at the University of Oxford is playing a key role in the vehicles' development.

Dr Richard Bomphrey, from the Department of Zoology, is leading this research, which is generating new insight into how insect wings have evolved over the last 350 million years. "Nature has solved the problem of how to design miniature flying machines," he says. "By learning those lessons, our findings will make it possible to aerodynamically engineer a new breed of surveillance vehicles that, because they're as small as insects and also fly like them, completely blend into their surroundings."

Currently the smallest of state-of-the-art fixed-wing unmanned surveillance vehicles are around a foot wide. The incorporation of flapping wings is the secret to making the new designs so small. To achieve flight, any object requires a combination of thrust and lift. In manmade aircraft, two separate devices are needed to generate these (i.e. engines provide thrust and wings provide lift), this limits the scope for miniaturising flying machines.

But an insect's flapping wings combine both thrust and lift. If manmade vehicles could emulate this more efficient approach, it would be possible to scale down flying machines to much smaller dimensions than is currently possible.

"This will require a much more detailed understanding than we currently have of how insect wings have evolved, and specifically of how different types of insect wing have evolved for different purposes," Dr Bomphrey says. "For instance, bees are load-lifters, a predator such as a dragonfly is fast and manoeuvrable, and creatures like locusts have to range over vast distances. Investigating the differences between insect wing designs is a key focus of our work. These ecological differences have led to a variety of wing designs depending on the task needing to be performed. It means that new vehicles could be customised to suit particular uses ranging from exploring hostile terrain, collapsed buildings or chemical spills to providing enhanced TV coverage of sports and other events".

Dr Bomphrey and his team lead the world in their use of both cutting-edge computer modelling capabilities and the latest high-speed, high-resolution camera technology to investigate insect wing design and performance.

Key to the work is the calculation of air flow velocities around insect wings. This is achieved by placing insects in a wind tunnel, seeding the air with a light fog and illuminating the particles with pulsing laser light - using a technique called Particle Image Velocimetry.

The team's groundbreaking work has attracted the attention of NATO, the US Air Force and the European Office of Aerospace Research and Development. The research is expected to produce findings that can be utilised by the defence industry within 3-5 years, leading to the development and widespread deployment of insect-sized flying machines within 20 years.

"This is just one more example of how we can learn important lessons from nature," says Dr Bomphrey. "Tiny flying machines could provide the perfect way of exploring all kinds of dark, dangerous and dirty places."

Dr Bomphrey is using his EPSRC-funded Fellowship to pursue this research. The fundamental aim of the work is to explore how natural selection has impacted on the design of insect wings and how these designs have been affected by the laws of aerodynamics and other physical constraints. "Evolution hasn't settled on a single type of insect wing design," says Dr Bomphrey. "We aim to understand how natural selection led to this situation. But we also want to explore how manmade vehicles could transcend the constraints imposed by nature."

EPSRC is the main UK government agency for funding research and training in engineering and the physical sciences, investing more than £850 million a year in a broad range of subjects - from mathematics to materials science, and from information technology to structural engineering.

For more information, visit: www.epsrc.ac.uk

Published in EPSRC

Vendum Batteries (OTCBB: VNDB), a US-based battery technology development company, is pleased to announce the launch of a new prototype research and development program.

The 6 month program, run by Vendum, will create multiple prototype materials and run extensive tests, the results of which will be used to develop functioning battery prototypes over the coming 18 months, but should also take us in new directions other than clean energy.

CEO Fraser Cottington comments, "As a company on the cutting edge of battery technology, research and development plays a vital role in our growth strategy. We are extremely excited about the program and I have no doubt the findings will open up fantastic opportunities for collaborative partnerships. We also look forward to the prospect of developing further intellectual property in the clean energy storage market, including cellulose paper based super capacitors."

Vendum is currently developing a Carbon Nanotube (CNT) and cellulose-based power source, ultimately aimed at revolutionizing the way we power mobile device to cars. Composed primarily of cellulose, raw materials are abundant across the world and fully biodegradable, therefore cost effective and harmless to the planet and people.

Vendum Batteries has a pending patent on a non-toxic, cellulose and CNT based light-weight battery. The paper-thin battery contains none of the toxic elements used in conventional batteries, such as mercury, lead, chromium, or cadmium. Our cutting edge carbon nanotube and cellulose-based technology makes it entirely biodegradable. The Vendum Battery will be developed from its current low power capacity, to soon accommodate the ever-increasing global demand for durable battery power for cell phones, iPods, human implants and eventually electrical vehicles etc.

Americans purchase around 5 billion batteries, leaving 146,000 tons of battery waste behind, and given that the worldwide personal battery use is a growing $63 billion industry, the potential of this revolutionary non-toxic technology could be enormous.

For more information visit: www.vendumbatteries.com

Disclaimer - Forward Looking Statements
This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. "Forward-looking statements" describe future expectations, plans, results, or strategies and are generally preceded by words such as "may," "future," "plan" or "planned," "will" or "should," "expected," "anticipates," "draft," "eventually" or "projected." You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events, or results to differ materially from those projected in the forward-looking statements, including the risks that actual results may differ materially from those projected in the forward-looking statements; projected events in this press release may not occur due to unforeseen circumstances, various factors, and other risks identified in a company's annual report on Form 10-K and other filings made by such company.

Published in Vendum Batteries

Mydea Technologies Corporation, which specializes in rapid prototyping of specialized equipment and accessories for designers, engineers and manufacturers, recently acquired state-of-the-art SPR/CNC milling equipment to enable creation of instant prototypes in a wide range of materials, including polypropylene, polycarbonate, ABS and aluminum.

Michael Siemer, founder and president of Mydea Technologies Corporation and former Disney imagineer, said Mydea’s SPR/CNC prototyping work is increasing rapidly. The firm recently moved into larger quarters at the University of Central Florida Business Incubation Program facilities at Research Park in east Orlando to accommodate the increased workload, Siemer said.

“We can now provide prototypes and low-volume production parts made from specific materials that are not currently available in additive manufacturing,” Siemer said.

Siemer explained that most additive manufacturing processes cannot accommodate specific materials that some customers require, and even when they do there still tends to be limitations involved

“Our new equipment is the only way to produce a low-volume run of parts without any tooling required in specific thermoplastic and aluminum materials,” Siemer said.

Siemer said the new equipment complements Mydea’s urethane casting, rapid tooling and other plastic and metal direct digital manufacturing options.

Mydea Technologies Corporation is a pioneer in the rapidly growing field of Direct Digital Manufacturing, where both Additive Manufacturing and Computerized Numerical Control (SPR/CNC) can  transforms digitized engineering specifications into three-dimensional objects quickly and accurately.

Mydea Technologies Corporation serves such companies as L-3 CyTerra, DRS, and Disney with quick-turn plastic and aluminum components.

Typically, new prototypes can be produced in as little as three to five days, Siemer said.

Michael Siemer CEO, Mydea Technologies Corporation, 407-737-1991, ext. 101 This e-mail address is being protected from spambots. You need JavaScript enabled to view it

Carol Ann Dykes, Site Manager UCF Business Incubation Program 407-882-1120 This e-mail address is being protected from spambots. You need JavaScript enabled to view it

Larry Vershel or Beth Payan, Larry Vershel Communications, 407-644-4142 This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

About Mydea Technologies:

Mydea Technologies was incorporated in July 2003 with a mission to assist companies and individuals in all aspects of product development including design and engineering, 3D modeling, rapid prototyping and production. The company is committed to researching and utilizing the newest innovations and technology for rapid product development. Mydea Technologies is located in the Central Florida Research Park in Orlando, Fla.  For more information, visit www.mydeatechnologies.com.

About the UCF Incubation Program:

Since its founding in 1999, the UCF Business Incubation Program has helped more than 140 emerging companies (including 90 current clients) create over $800 million in annual revenue and more than 1,600 new jobs with an average salary of $59,000. With eight facilities across the Greater Orlando community, the Incubation Program is a collaboration in economic development between the University of Central Florida, Orange County, the City of Orlando, Seminole County, the City of Winter Springs, The City of Sanford, Lake County, the City of Leesburg, Osceola County, the City of Kissimmee, City of St. Cloud, and the Florida High Tech Corridor Council. For more information, please visit www.incubator.ucf.edu.

Published in Mydea Technologies

Copyright © 2018 Prototype Today ®. All rights reserved.

|   Privacy Policy |   Terms & Conditions |   Contact Us |

All trademarks and registered trademarks are the property of their respective owners.

Additive Manufacturing Today