gpi-prototype-top-banner

Stratasys, Ltd. (Nasdaq: SSYS) announced the debut of "Gemini", a two-part chaise lounge designed by Neri Oxman, Architect, Designer and Professor of Media, Arts and Science at MIT, in collaboration with Professor W. Craig Carter, Department of Materials Science and Engineering of MIT, using Stratasys' Objet500 Connex3 Color Multi-material 3D Printer and CNC milling by Le Laboratoire.

Conveying the relationship of twins in the womb through material properties and their spatial arrangement, Gemini combines both traditional and innovative manufacturing processes and was unveiled at the "Vocal Vibrations" exhibition at La Laboratoire in Paris, France.

The two piece cocoon-like structure combines subtractive and additive manufacturing and continues Oxman's exploration of the Objet500 Connex3 Color Multi-material 3D Printing technology, which enables a variety of material properties and color combinations to be printed in a single build.

"The twin chaise spans multiple scales of the human existence extending from the warmth of the womb to the stretches of the Gemini zodiac in deep space. It recapitulates a human cosmos, our body, like the constellation, drifting in quiet space. Here the duality of nature is expressed through the combination of traditional materials and state of the art 3D printing," says Oxman. "Stratasys new multi- material color 3D printing capability has allowed me to create a rich dialog between sound and light, rigid and flexible, natural and man-made materials and high and low spatial frequencies in ways that were impossible until now".

In a design commission to explore how materials interact with the human body, the twin chaise features an enclosure which cushions the body within a colored, multi-material 3D printed cocoon, replicating the tranquillity of the womb. A solid wood shell house provides the protective exterior. Lining Gemini from the inside are 44 composite PolyJet digital materials, including color. The 3D printed 'skin' uses Stratasys' unique triple jetting technology and combines three base materials: Stratasys' rubber-like TangoPlus, rigid VeroYellow and VeroMagenta, forming varying shades of transparent and opaque yellows and oranges, in different rigidities. The materials, shapes and surfaces of the 3D printed skin enable a unique vibrational acoustic effect for a quiet calming environment.

"Gemini is fundamentally about the complex and contradictory relationship between twins, which is mirrored in the geometrical forms of the two-part chaise and the dualities that drive their formation, such as the combination of natural and synthetic materials," explains Professor Oxman. "The Objet500 Connex3 Color Multi-material 3D Printer and technology enabled us to print 44 material combinations that not only target specific pressure points on the body to form a sensorial landscape, but also act as a soundproof anechoic chamber, an architecture for quieting the mind."'

Gemini features separate, independent parts that together form an enclosure: Gemini Alpha and Gemini Beta. They are inspired by the mythical relationship between the Dioskouri twins, Castor, born of man (named Gemini Beta after the star in the Northern constellation of Gemini) and Pollux born divine (named Gemini Alpha after the second brightest star in the constellation of Gemini).

In keeping with Greek mythology, the first piece, Gemini Alpha recapitulates the form of a swan, as it is believed that Leda, the twins' mother, became pregnant with Pollux after being seduced by Zeus in the disguise of a swan. Inspired by the lingual root of the word 'swan', "sound" or "to sing," Gemini Alpha includes a sound enclosure featuring a range of Stratasys 3D printed PolyJet digital materials with varying elastic and acoustical properties. Surface features that are more curved than others are assigned more elastic properties thereby increasing sound absorption around local chambers.

"I wanted to reproduce the calming and still ambience of the fetus' prenatal experience," explains Professor Oxman. "The 3D printed sound-proof skin brings the whole concept to life, transporting the visitor once seated within the chaise to ultimate serenity."

Gemini Beta, to be unveiled at the Laboratoire Cambridge exhibition in October 2014, is designed to complete its twin, creating a full enclosure, however it can also function as an independent chaise when positioned upside down.

Commenting on Gemini as a key aspect of Vocal Vibrations, David Edwards, founder and director of Le Laboratoire, Paris, says, "We are delighted to be collaborating with Neri Oxman, whose ground-breaking creations continue to wow audiences while demonstrating the dramatic potential of 3D printing within the design world. In fact, this will be the first time that Le Laboratoire has featured a 3D printed piece and we expect the Gemini chaise will prove to be an attention-grabbing aspect of Vocal Vibrations."

"Once again Professor Neri Oxman has demonstrated her ability to push the boundaries of design and manufacturing with the help of Stratasys color multi-material 3D printing," says Arita Mattsoff, Vice President Marketing for Stratasys. "This is a truly unique, functional piece of art that combines traditional manufacturing techniques with cutting edge 3D printing technology. We are seeing more and more designers embrace 3D printing as a powerful new creative tool, enabling them to bring designs they never thought possible to life in a matter of hours."

For more information, visit: www.lelaboratoire.org/en

Published in Stratasys

Motorcyclist Stephen Power was severely injured in an accident near Cardiff, UK. He broke both arms and his right leg was damaged so badly it required a bone graft. Stephen also suffered major injuries to his head and face. He regained consciousness after several months in the hospital.

Consultant maxillofacial surgeon Adrian Sugar explains that a specialist team at the Morriston Hospital in Swansea, UK, successfully dealt with all facial injuries, with the exception of his left cheek and eye socket. The patient’s cheekbone was too far out and his eye was sunk in and dropped. Due to the close proximity of critical and sensitive anatomical structures, the team applied a more accurate expertise approach. This strategy ensured no further damage to his eye in order to maintain his eyesight. The expertise approach entailed the latest 3D computer-aided practices applied by PDR and innovative 3D printing of the titanium implant and fixation plate by LayerWise.

LayerWise manufactured the implant and fixation plate in medical-grade titanium (Ti6Al4V ELI) in accordance with the ISO 13485 standard. “The 3D printing technology mastered by LayerWise is perfectly suited for producing this kind of ultra strong, precise and lightweight titanium implants,” says Peter Mercelis, Managing Director of LayerWise.

“The reconstructive orbital floor plate plays an essential role in the repositioning of the eye in light of the targeted facial symmetry and eye alignment,” explained Romy Ballieux from LayerWise’s Medical Business Unit. “LayerWise produced the floor plate, and polished its upper surface to minimize friction with soft tissues. The floor plate was fixated to the zygomatic bone through the plate’s dedicated slip with attachment holes. The digital 3D printing technology successfully maintained the accuracy of the precise medical imaging data, pre-operative planning and implant design. The 0.1 millimeter (4 mils) geometric accuracy of the floor plate’s freeform surfaces could not be achieved using traditional manufacturing methods.”

Accuracy is even more critical with regard to the fixation plate. This fairly long, slim, curved 3D printed plate requires precise positioning to be able to tie together many fractured bone pieces of the cheek region. A custom-fitting guide was used to fit securely around the anatomy, with slots located to guide the surgeon’s movement when positioning the plate. The fixation plate restored the correct anatomical connection between the frontal, zygomatic and temporal bone. This connection contributed to the successful reconstruction of the patient’s anatomy, providing the best possible facial symmetry.

Ballieux noted: “Dedicated medical engineering specialized in the production aspects of metal 3D printing were key in achieving the impressive facial reconstruction in such a short timespan. The digital process resulted in the 3D printed implant and fixation plate produced in a single manufacturing step in only a couple of hours.”

After his recovery, Stephan Power experiences the results of the surgery as ‘totally life changing’. Instead of using a hat and glasses to mask his injuries, he is now able to do day-to-day things, go and see people, walk in the street, and even go to any public areas. The improved facial symmetry and alignment of his eyes, achieved with the LayerWise implant and fixation plate, clearly made a big difference to the patient. “We are confident that our metal 3D printing technology is capable of improving the quality of life of many more patients,” Ballieux concluded. “The fast-turnaround digital process, from medical imaging up to the finalized 3D printed implants, delivers the required implant geometry and precision to obtain such great facial reconstructions.”

These implants were the result of a close collaboration beween LayerWise specialists and PDR design experts Sean Peel and Dr. Dominic Eggbeer. PDR has a formal collaboration with the Maxillofacial Unit at Morriston Hospital: cartis (Centre for Applied Reconstructive Technologies in Surgery).

LayerWise’s Medical Business Unit aims at providing maximum patient comfort through serial and patient-specific implant manufacturing. The metal Additive Manufacturing (AM) process mastered by LayerWise yields fully anatomic implant shapes offering increased functionality and esthetics as well as improved osseo-integration. LayerWise offers cost-effective manufacturing of orthopedic, cranio-maxillofacial, spinal and dental implants and instruments.

LayerWise also built the world’s first patient-specific lower jaw using metal 3D printing.

For more information, visit: www.layerwise.com/medical

Published in LayerWise

Renishaw has collaborated with a leading British bicycle company to create a 3D-printed metal bike frame. Empire Cycles, located in Northwest England, designed the mountain bike to be stronger and lighter, using a process called topological optimization and employing Renishaw’s AM250 additive manufacturing system. The additive process offers design, construction and performance advantages that include: blending complex shapes or hollow structures with internal strengthening features, flexibility to make design improvements right up to the start of production, and the convenience of making one-off parts as easily as batches, which allows for customization. The new titanium alloy frame, about 33% lighter than the original, was manufactured in sections and bonded together.

The two companies originally agreed to optimize and manufacture only the bike’s seat post bracket, but after the part’s successful production, improvement of the whole frame became the new goal. Empire started with a full-size 3D printed replica of its current aluminium alloy bike and the frame was sectioned into parts that could be formed in the AM250’s 12-in. (300-mm) build height. The design was updated with guidance from Renishaw’s applications team and an optimized design – one that eliminates many of the downward facing surfaces that require wasteful support structures – was created using topological optimization.

Topological optimization software programs use iterative steps and finite element analysis to determine the “logical” material placement. Material is removed from areas of low stress until a design optimized for load bearing is created, resulting in a model that is light and strong. Historical challenges in manufacturing these computer-generated shapes are overcome through the additive manufacturing process.

The AM250 uses a high-powered fiber laser to produce fully dense metal parts direct from 3D CAD data. Parts are built layer by layer, in thicknesses ranging from 20 to 100 microns, using a range of fine metal powders melted in a tightly controlled atmosphere. A fully welded vacuum chamber and ultra-low oxygen content in the build atmosphere allow processing of reactive materials, including titanium and aluminum.
    
The key benefit to Empire Cycles is the performance advantages derived from the additive process. The design has all of the advantages of a pressed steel “monocoque” construction used in motorbikes and cars, without the investment in tooling that would be prohibitive for a small manufacturer. “As no tooling is required, continual design improvements can be made easily, and as the component cost is based on volume and not complexity, some very light parts will be possible at minimal costs,” said Dave Bozich, Business Manager, Renishaw.

The original aluminium alloy seat post bracket is 12 oz. (360 g) and the first iteration of the hollow titanium version is 7 oz. (200 g), a weight savings of 44%. Comparison of the entire frame has the original bike frame weighing in at 4.6 lbs. (2100 g), with the redesigned additive-made frame at only 3.1 lbs. (1400 g), a 33% weight savings. “There are lighter carbon fiber bikes available, but the durability of carbon fiber can’t compare to a metal bike,” said Chris Williams, Managing Director at Empire Cycles. “They are great for road bikes, but when you start chucking yourself down a mountain you risk damaging the frame. We over-engineer our bikes to ensure there are no warranty claims.”

Titanium alloys have more density than aluminium alloys, with relative densities of around .14 lb/in3 (4 g/cm3) and .11 lb/in3 (3 g/cm3), respectively. Therefore, the only way to make a titanium alloy part lighter than its aluminium alloy counterpart is to significantly alter the design and remove any material not contributing to the overall strength of the part. The companies believe further analysis and testing it could result in further weight reduction.

In addition to durability and corrosion-resistance, titanium alloys have a high Ultimate Tensile Strength (UTS) of more than 900 MPa, when processed using additive manufacturing. With near perfect densities – greater than 99.7 percent – the process is better than casting and the small, spherical nature of additive-part porosity has little negative effect on strength. The seat post bracket was tested using the mountain bike standard EN 14766, and it withstood 50,000 cycles of 270 lb ft (1200 N). Testing continued to six times the standard without failure.

Empire is passionate about partnering with top British engineering companies to create elite products. Research into bonding methods resulted in Mouldlife providing the adhesive, which was tested by technical specialists at 3M test facilities. The wheels, drivetrain and components required to finish the bike, were provided by Hope Technology Ltd.

Empire and Renishaw plan to continue testing the completed bicycle frame in the laboratory, using Bureau Veritas UK, and in the field, using portable sensors in partnership with Swansea University. “We plan to develop this further, in partnership, to look at iterative improvements in bonding methods, such as specific surface finishes,” said Bozich. “This project demonstrates that excellent results can be achieved through close customer collaboration.”

For more information, visit: www.renishaw.com/empire

Published in Renishaw

With its latest exhibit, "EDAG GENESIS", EDAG offers a visionary outlook for what might well be the next industrial revolution in automotive development and production. Current advances in additive manufacturing now allow a component, module, or even a complete, one-piece vehicle body to be produced in one single production process.

At the EDAG stand in Geneva, the company will be presenting a futuristic vehicle sculpture "EDAG GENESIS". Using the example of a body structure, the sculpture was designed to demonstrate the revolutionary potential of additive manufacturing including bionic lightweight principles, topological optimisation and load-conforming design strategy.

Our exhibit, "EDAG GENESIS" can be seen as a symbol of the new freedoms that additive manufacturing processes will open up to designers and engineers in development and production. Additive manufacturing will make it possible to come a great deal closer to the construction principles and strategies of nature.

"EDAG GENESIS" is based on the bionic patterns of a turtle, which has a shell that provides protection and cushioning and is part of the animal's bony structure. The shell is similar to a sandwich component, with fine, inlying bone structures that give the shell its strength and stability. In "EDAG GENESIS", the skeleton is more of a metaphor; it is there to ensure not mobility, but passenger safety. The framework calls to mind a naturally developed skeletal frame, the form and structure of which should make one thing perfectly clear: these organic structures cannot be built using conventional tools!

The immense potential of additive manufacturing inspired us to define and analyse the current status quo of the latest technologies, and then assess the extent to which it might be possible to use them in vehicle development and production. What process offers the best prospects for being able to produce structural parts with the required product properties in a single production step, without the use of tools?

A multi-disciplinary team of EDAG designers and specialists from the EDAG Competence Centre for Lightweight Construction took a close look at the potential of a number of promising processes, and discussed them with research and industrial experts. Possible candidates for the situation analysis of additive manufacturing were technologies such as selective laser sintering (SLS), selective laser melting (SLM), stereolithography (SLA), and fused deposition modelling (FDM).

In the assessment, a specially developed evaluation matrix was used to quantify the structural relevance of the technologies. How wide is the range of materials that can be used, and what degree of complexity and lot sizes are involved in producing structural parts? The processes were also assessed and classified with regard to part size, tolerance, ecological performance and manufacturing costs.

Apart from SLM, the generative process already industrially available today, with its portfolio of weldable metals and plastics, a refined FDM process also looks to be a promising candidate for the future-oriented subject of additive manufacturing.

Unlike other technologies, FDM makes it possible for components of almost any size to be produced, as there are no pre-determined space requirements to pose any restrictions. Instead, the structures are generated by having robots apply thermoplastic materials. Complex structures are built up layer by layer in an open space - without any tools or fixtures whatsoever.

Metallic SLM aside, most of the high-performance plastics used in additive manufacturing processes do not yet achieve the strength, stiffness and energy absorption values generally required in the industry. This is remedied in the FDM process by the parallel addition of an endless carbon fibre to the production process. One of the central characteristics of FDM is its potential for the incorporation of fibre reinforcements to systematically increase strength and stiffness.

Even though industrial usage of additive manufacturing processing is still in its infancy, the revolutionary advantages with regard to greater freedom in development and tool-free production make this technology a subject for the future. From today's point of view, the production of components, and in the next stage modules, is certainly feasible. As for the target of using additive manufacturing to produce complete vehicle bodies: there is still a long way to go before this becomes an industrial application, so for the time being, it remains a vision.

For more information, visit: www.edag.de

Published in EDAG

Solid Concepts has manufactured a 3D printed metal gun using a laser sintering process and powdered metals. The gun, a 1911 classic design, functions beautifully and has already handled 50 rounds of successful firing. It is composed of 33 17-4 Stainless Steel and Inconel 625 components, and decked with a Selective Laser Sintered (SLS) carbon-fiber filled nylon hand grip. The successful production and functionality of the 1911 3D printed metal gun proves the viability of 3D Printing for commercial applications.

“We’re proving this is possible, the technology is at a place now where we can manufacture a gun with 3D Metal Printing,” says Kent Firestone, Vice President of Additive Manufacturing at Solid Concepts. “And we’re doing this legally. In fact, as far as we know, we’re the only 3D Printing Service Provider with a Federal Firearms License (FFL). Now, if a qualifying customer needs a unique gun part in five days, we can deliver.”

The metal laser sintering process Solid Concepts used to manufacture the 30+ gun components is one of the most accurate additive manufacturing processes available, and more than accurate enough to build the interchangeable and interfacing parts within the 1911 series gun. The gun proves the tight tolerances laser sintering can meet. Plus, 3D Printed Metal has less porosity issues than an investment cast part and better complexities than a machined part. The 3D Printed gun barrel sees chamber pressures above 20,000 psi every time it is fired. Solid Concepts chose to build the 1911 because the design is public domain.

“The whole concept of using a laser sintering process to 3D Print a metal gun revolves around proving the reliability, accuracy and usability of metal 3D Printing as functional prototypes and end use products,” says Firestone. “It’s a common misconception that 3D Printing isn’t accurate or strong enough, and we’re working to change people’s perspective.”

The 3D Printed metal gun proves that 3D Printing isn’t just making trinkets and Yoda heads. The gun manufactured by Solid Concepts debunks the idea that 3D Printing isn’t a viable solution or isn’t ready for mainstream manufacturing. With the right materials and a company that knows how to best program and maintain their machines, 3D printing is accurate, powerful and here to stay.

For more information, visit: www.solidconcepts.com

Published in Solid Concepts

The horse, dubbed by researchers as ‘Titanium Prints’, had its hooves scanned with a handheld 3D scanner this week. Using 3D modeling software, the scan was used to design the perfect fitting, lightweight racing shoe and four customised shoes were printed within only a few hours.

"3D printing a race horseshoe from titanium is a first for scientists and demonstrates the range of applications the technology can be used for," said John Barnes, Titanium Technologies Theme Leader.

Traditionally made from aluminium, a horseshoe can weigh up to one kilogram but the horse’s trainer, John Moloney, says that the ultimate race shoe should be as lightweight as possible.

“Any extra weight in the horseshoe will slow the horse down. These titanium shoes could take up to half of the weight off a traditional aluminium shoe, which means a horse could travel at new speeds.

“Naturally, we’re very excited at the prospect of improved performance from these shoes,” John Moloney said.

CSIRO’s Titanium expert, John Barnes, said that 3D printing a race horseshoe from titanium is a first for scientists and demonstrates the range of applications the technology can be used for.

“There are so many ways we can use 3D titanium printing. At CSIRO we are helping companies create new applications like biomedical implants and even things like automotive and aerospace parts.

“The possibilities really are endless with this technology,” he said.

The precision scanning process takes just a few minutes and for a horse, shoes can be made to measure each hoof and printed the same day.

For more information, visit: www.csiro.au

Published in CSIRO

A group of engineering students at the University of California, San Diego tested a 3D-printed rocket engine made out of laser sintered metal at the Friends of Amateur Rocketry testing site in the Mojave Desert.

To build the engine, students used a proprietary design that they developed. The engine was primarily financed by NASA’s Marshall Space Flight Center in Huntsville, Alabama and was printed by Illinois-based GPI Prototype and Manufacturing Services using direct metal laser sintering. This is the first time a university has produced a 3D printed liquid fueled metal rocket engine, according to the students, who are members of the UC San Diego chapter of Students for the Exploration and Development of Space.

“We’ve all been working so hard, putting countless hours to ensure that it all works,” said Deepak Atyam, the organization’s president. “If all goes well, we would be the first entity outside of NASA to have tested a liquid fueled rocket motor in its entirety. We hope to see all of our hard work come to fruition.”

The engine was designed to power the third stage of a rocket carrying several NanoSat-style satellites with a mass of less than a few pounds each. The engine is about 6 to 7 inches long and weighs about 10 lbs. It is designed to generate 200 lbs of thrust and is made of cobalt and chromium, a high-grade alloy. It runs on kerosene and liquid oxygen and cost $6,800 to manufacture, including $5,000 from NASA. The rest was raised by students through barbeque sales and other student-run fundraisers.

A 3D printed metal rocket engine would dramatically cut costs for launches, said Forman Williams, a professor of aerospace engineering at the Jacobs School of Engineering at UC San Diego, who is the students’ advisor. Williams admits that he was skeptical at first as the design of liquid-propellant rockets is very complex and detailed, but the students surprised him.

For more information, visit: seds.ucsd.edu



Designer François Brument takes a close look at the possibilities of digital design when it comes to the creation of living spaces. He breaks with traditional approaches to architecture, interior design and furnishings and created separate self-enclosed areas using additive manufacturing. Brument melds these areas into a one unit system including rooms, walls and furniture items.

His carte blanche project titled 'Habitat imprimé' (printed living space), is the result of a collaborative effort with Sonia Laugier. The exhibit on display is a real model of a bedroom with integrated shower and walk-in closet, which visualises the possibilities of additive technologies. The room can be divided as required, shelves can be integrated into walls, surfaces can be structured in any manner desired – the restrictions that formerly set limits to the creativity of builders, architects and designers have been removed.

Looking for a way to turn his vision into reality, Brument contacted voxeljet in May 2011. He was very excited about the technical possibilities offered by 3D printing and after extensive discussions with voxeljet's experts, it was clear that the Augsburg-based company could provide the perfect solution for his project. The visionary was particularly impressed with the large-format VX4000 printer at the voxeljet service centre, which can print very large moulds with a maximum volume of eight cubic metres.

Once the CAD data was forwarded to the service centre, it was time to "print" this unique project. The VX4000 built the entire living space, including furniture, shelving, wash basin and all technical installations, in a total of 64 moulds, which only had to be assembled into a unit.

"As a manufacturer of 3D printers with an attached service centre, our ideas are anything but conventional. Still, we were both surprised and inspired by François Brument's creative approach. The 'Habitat imprimé' project is a milestone for the 3D print technology and drives forward our activities for the development of printing systems for concrete," says voxeljet-CEO Dr. Ingo Ederer.

For more information, visit: www.voxeljet.com

Published in voxeljet

Global athletic leader New Balance is proud to announce a significant advancement in the use of 3D printing to customize high performance products for athletes.   Utilizing a proprietary process, the brand is able to produce spike plates customized to the individual needs and desires of their elite athletes.   At the New Balance Games in January 2013, Team New Balance athlete, Jack Bolas, became the first ever track athlete to compete in customized, 3D printed plates.

New Balance has developed a proprietary process for utilizing a runner's individual biomechanical data to create hyper-customized spike plates designed to improve performance.  The process requires race simulation biomechanical data which the New Balance Sports Research Lab collects using a force plate, in-shoe sensors and a motion capture system.   Advanced algorithms and software are then applied to translate this data into custom 3D printed spike designs.

For the production of the custom plates, New Balance uses selective laser sintering (SLS) to convert powder materials into solid cross-sections, layer by layer using a laser.  SLS printing enables the customization process by allowing for complex designs that could not be achieved through traditional manufacturing methods.  Additionally, SLS printing greatly accelerates the turnaround time from design to functional part.

"Utilizing our Team New Balance Athletes to develop the customization process was extremely helpful", says Sean Murphy, New Balance's Senior Manager of Innovation and Engineering.   "We are impressed with their precise ability to identify and speak to the differences in the custom options provided.  They are acutely aware of what is happening in their shoes".

NB Athletes involved in the development of this process included: 2008 and 2012 US Olympic Athlete and current 1500m World Champion gold medalist Jenny Barringer Simpson, 2012 US Olympic Athlete Kim Conley, 2012 Great Britain Olympic Athlete Barbara Parker and 4 time All-American runner in the 800m, 1500m and the Mile Jack Bolas. These athletes provided key feedback in order to develop spike plates that spoke to each individual athlete's personal preference, biomechanics and specific race needs.

In addition to printing semi-rigid parts like spike plates for track runners, New Balance is working on softer SLS printed components that mimic the cushioning properties of foam midsoles.  This initiative will be critical to bringing the customization process to a broader audience of athletes .   

"With 3D printing we are able to pursue performance customization at a new level to help our elite NB athletes and eventually all athletes. We believe this is the future of performance footwear and we are excited to bring this to consumers," says New Balance President and CEO Robert DeMartini. "As the only major athletic brand to manufacture shoes in the U.S., we are proud to invest in American workers.    Developing our printing capabilities could ultimately help us further invest in the American worker by adding highly technical positions to our already skilled labor force in Massachusetts and Maine."

New Balance, headquartered in Boston, MA has the following mission: Demonstrating responsible leadership, we build global brands that athletes are proud to wear, associates are proud to create and communities are proud to host. New Balance is currently the only athletic shoe company that manufactures footwear in the U.S. with 25% of our U.S. footwear shipments produced at five New England facilities. The company also operates a manufacturing facility in Flimby, U.K. New Balance employs more than 4000 associates around the globe, and in 2012 reported worldwide sales of $2.4 billion.

For more information, visit: www.newbalance.com

Published in New Balance

RedEye On Demand, a rapid prototyping and direct digital manufacturing service, and its parent company Stratasys, Ltd. (NASDAQ: SSYS) announced a collaboration with KOR EcoLogic to produce URBEE 2, the first road-ready, fuel-efficient car built using 3D printing, or additive manufacturing, technologies. Targeted to hit the road in two years, URBEE 2 represents a significant milestone in the world of traditional assembly-line manufacturing.
 
“A future where 3D printers build cars may not be far off after all,” said Jim Bartel, Stratasys vice president of RedEye On Demand. “Jim Kor and his team at KOR EcoLogic had a vision for a more fuel-efficient car that would change how the world approaches manufacturing and today we’re achieving it. URBEE 2 shows the manufacturing world that anything really is possible. There are few design challenges additive manufacturing capabilities can’t solve.”
 
The KOR EcoLogic team will fully design URBEE 2 in CAD files, sending them to RedEye On Demand for building through Stratasys’ Fused Deposition Modeling (FDM) process. This unique process applies thermoplastics in layers from the bottom up, yielding parts that are durable, precise and repeatable. The finished two-passenger vehicle will comprise 40 large, intricate 3D-printed parts compared to hundreds of parts in the average car. The strong, lightweight vehicle will be designed to go 70 mph on the freeway, using a biofuel like 100 percent ethanol. The goal is for URBEE 2 to drive from San Francisco to New York City on only 10 gallons of fuel, setting a new world record.
 
“As a mechanical engineer, I’ve always believed we could use technology to help us solve some of society’s greatest challenges, like minimizing our dependence on oil and reducing ozone emissions. How cool is it that American manufacturing can evolve to tackle these challenges head-on? Our team is excited to launch URBEE 2, putting a next-generation vehicle on the road that will eventually be sold to the public,” said Jim Kor, president and senior designer for Winnipeg-based KOR EcoLogic.
 
URBEE 2, which stands for urban electric, follows in the tracks of its conceptual predecessor, Urbee 1. Produced in 2011 as a partnership between KOR EcoLogic, Stratasys and RedEye On Demand, Urbee 1 proved that 3D printing could in fact produce large, strong parts that meet accurate specifications of a car body. URBEE 2 will take the basic concepts of Urbee 1 to a higher level, including features like a fully functioning heater, windshield wipers and mirrors.
 
“With the Urbee 1 project, I learned that product design is nearly unencumbered by considerations on how parts can be made with digital manufacturing. That liberation is incredibly powerful and holds a lot of potential for the future of manufacturing,” said Kor.

For more information, visit: www.urbee.net

Published in Stratasys

Physicians at Weill Cornell Medical College and biomedical engineers at Cornell University have succeeded in building a facsimile of a living human ear that looks and acts like a natural ear. Researchers believe their bioengineering method will finally succeed in the long quest by scientists and physicians to provide normal looking "new" ears to thousands of children born with a congenital ear deformity.

In their PLOS ONE study, the researchers demonstrate how 3D printing and new injectable gels made of living cells can be used to fashion ears that are identical to a human ear. Over a three-month period — the length of the study — these flexible ears steadily grew cartilage to replace the collagen that was used to help mold them.

"I believe this will be the novel solution reconstructive surgeons have long wished for to help children born with absence or severe deformity of the ear," says the study’s co-lead author, Dr. Jason Spector, director of the Laboratory for Bioregenerative Medicine and Surgery (LBMS) and associate professor of surgery of plastic surgery in the Department of Surgery at Weill Cornell Medical College and an adjunct associate professor in the Department of Biomedical Engineering at Cornell University. "A bioengineered ear replacement like this would also help individuals who have lost part or all of their external ear in an accident or from cancer."

Currently, replacement ears are constructed using materials that have a Styrofoam-like consistency or, sometimes, surgeons will build ears from rib that is harvested from a young patient. "This surgical option is very challenging and painful for children, and the ears rarely look totally natural or perform well," says Dr. Spector, who is also a plastic and reconstructive surgeon at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. "All other attempts to 'grow’ ears in the lab — including one 1997 study widely publicized by photos of ears implanted on the backs of mice — have failed in the long term."

This Cornell bioengineered ear is the best to date in appearing and acting like a natural ear, the researchers report. Also, the process of making the ears is fast — it takes a week at most.

"This is such a win-win for both medicine and basic science, demonstrating what we can achieve when we work together," says the study’s other lead author, Dr. Lawrence J. Bonassar, associate professor and associate chair of the Department of Biomedical Engineering at Cornell University.
Scanning, Printing and Molding a Human Ear in a Week

The deformity that both Dr. Spector and Dr. Bonassar seek to remedy is microtia, a congenital deformity in which the external ear is not fully developed. Although the causes for this disorder are not entirely understood, research has found that microtia can occur in children whose mothers took an acne medication during pregnancy. Typically, only a single ear is affected.

The incidence of microtia varies from almost one to more than four per 10,000 births each year. Many children born with microtia have an intact inner ear, but experience hearing loss due to the missing external ear structure, which acts to capture and conduct sound.

Dr. Spector and Dr. Bonassar have been collaborating on bioengineered human replacement parts since 2007, and Dr. Bonassar has also been working with other Weill Cornell physicians. For example, he and Weill Cornell’s neurological surgeon Dr. Roger Härtl are currently testing bioengineered disc replacements using some of the same techniques demonstrated in this current study.

The researchers specifically work to develop replacements for human structures that are primarily made of cartilage — joints, trachea, spine, nose — because cartilage does not need to be vascularized with a blood supply in order to survive.

To make the ears, Dr. Bonassar and his colleagues first took a combination laser scan and panoramic photo of an ear from twin girls, which provided a digitized 3D image of their ears on a computer screen. That took 30 seconds, and did not involve any ionizing radiation. The researchers then converted that image into a digitized "solid" ear and used a 3D printer to assemble a mold of the ear. The mold is like a box with a hole in the middle that is in the shape of the mirror image of the ear, say researchers.

They injected animal-derived collagen into that ear mold, and then added nearly 250 million cartilage cells. The collagen served as a scaffold upon which cartilage could grow. Collagen is the main structural protein in the body of every mammal. Animal-based collagen is frequently used for cosmetic and plastic surgery. This high-density collagen gel, which Cornell researchers developed, resembles the consistency of flexible Jell-O when the mold is removed.

"The process is fast," Dr. Bonassar says. "It takes half a day to design the mold, a day or so to print it, 30 minutes to inject the gel and we can remove the ear 15 minutes later. We trim the ear and then let it culture for several days in a nourishing cell culture medium before it is implanted."

During the three-month observation period, the cartilage in the ears grew to replace the collagen scaffold. "Eventually the bioengineered ear contains only auricular cartilage, just like a real ear," says Dr. Spector. Previous bioengineered ears have not been able to maintain their shape or dimensions over time, and the cells within them did not survive.

The researchers are now looking at ways to expand populations of human ear cartilage cells in the laboratory so that these cells can be used in the mold.

Dr. Spector says the best time to implant a bioengineered ear on a child would be when they are about 5- or 6-years-old, because at that age, ears are 80 percent of their adult size. "We don’t know yet if the bioengineered ears would continue to grow to their full size, but I suspect they will," says Dr. Spector. "Surgery to attach the new ear would be straightforward — the malformed ear would be removed and the bioengineered ear would be inserted under a flap of skin at the site."

Dr. Spector says that if all future safety and efficacy tests work out, it might be possible to try the first human implant of a Cornell bioengineered ear in as little as three years.

"The innovation in this study is two-fold," says Dr. Bonassar. "The use of imaging technology to rapid and accurately make the shape of the ear implant is new, as is the high-density collagen gel for the mold."

"These bioengineered ears are highly promising because they precisely mirror the native architecture of the human ear," Dr. Spector says. "They should restore hearing and a normal appearance to children and others in need. This advance represents a very exciting collaboration between physicians and basic scientists. It is a demonstration of what we hope to do together to improve the lives of these patients with ear deformity, missing ears and beyond."

Other co-authors of the study are Dr. Alyssa J. Reiffel, Dr. Karina A. Hernandez, and Justin L. Perez from the Laboratory for Bioregenerative Medicine and Surgery at Weill Cornell Medical College; and Concepcion Kafka, Samantha Popa, Sherry Zhou, Satadru Pramanik, Dr. Bryan N. Brown and Won Seuk Ryu, from the Department of Biomedical Engineering at Cornell University.

For more information, visit: www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0056506

CSIRO scientists are using 3D printing to build a new generation of hi-tech fish tags made of titanium. The aim is to use the tags to track big fish such as marlin, tuna, swordfish, trevally and sharks for longer periods.

CSIRO is printing the tags at its Lab 22 facility in Melbourne. The tags are printed overnight and then shipped to Tasmania where marine scientists are trialing them.

Tags are made of titanium for several reasons: the metal is strong, resists the salty corrosiveness of the marine environment, and is biocompatible (non-toxic to living tissues).

One of the advantages of 3D printing is that it enables rapid manufacture of multiple design variations which can then be tested simultaneously. "Using our Arcam 3D printing machine, we've been able to re-design and make a series of modified tags within a week," says John Barnes, who leads CSIRO's research in titanium technologies.

CSIRO's 3D printing facility prints metal items layer by layer out of fused metal powder.  Had the scientists been using conventional tags which are machined out of metal blocks, it would have taken a couple of months to design, manufacture and receive the new designs for testing.

"Our early trials showed that the textured surface worked well in improving retention of the tag, but we need to fine-tune the design of the tag tip to make sure that it pierces the fish skin as easily as possible," says John.

"The fast turnaround speeds up the design process – it's very easy to incorporate amendments to designs. 3D printing enables very fast testing of new product designs, which why it's so attractive to manufacturers wanting to trial new products."

Scientists from a number of agencies, including CSIRO Marine and Atmospheric Research, use fish tags to track movements of individual marine species and increase understanding of their behavior. Tracks of selected marine animals tagged by CSIRO and partner agencies can be viewed on the CSIRO Ocean Tracks website.

Medical implants such as dental implants and hip joints are made of biocompatible titanium with a surface texturing which speeds healing and tissue attachment after implantation. Scientists hope that a similar rough surface will help the tag to stay in fish longer.

"A streamlined tag that easily penetrates the fish's skin, but has improved longevity because it integrates with muscle and cartilage, would be of great interest to our colleagues conducting tagging programs across the world," said CSIRO marine researcher, Russell Bradford.

CSIRO's Lab 22 3D printing facility was established in October 2012 and has been used to manufacture a range of prototype products including biomedical implants, automotive, chemical processing and aerospace parts.

For more information, visit: www.csiro.au/TitaniumTechnologies

Published in CSIRO

Rapid News Communications Group, publishers of TCT Magazine, the publication for Additive Manufacturing and Industrial 3D Printing have turned their attention to the consumer market as the holiday season approaches.

With winter in full flow the focus naturally turns to the festive period. Times of joy and celebration epitomised by the tradition of gift-giving. The Personalize by TCT collection brings you the 40 hottest 3D printed gifts this season — from the useful to the purposely useless; from the most staggeringly complex to the most beautifully simple.

Group Editor and curator of the publication James Woodcock comments, “Increasingly 3D printing is inspiring designers to push boundaries, change direction and experiment in areas such as architecture, fashion, jewellery and interiors. In fact, we believe that 3D printing is as much an excuse for designers to do something different as it is the enabling technology — in no way is this a bad thing, we all need an excuse to let loose once in a while.

“Whether you are looking for a unique and inspirational gift for friends and family or simply want to have the coolest digital coffee table publication to share this holiday season you have found your solution in Personalize by TCT. From established brands such as Freshfiber and Freedom of Creation from 3D Systems to smaller independent designers, we’ve got something from them all in this publication.”

Personalize by TCT is available from today as a free download within the TCT Magazine app.

For more information or to download the app, visit: itunes.apple.com/gb/app/tct-magazine/id561028586?mt=8

Imagine landing on the moon or Mars, putting rocks through a 3-D printer and making something useful – like a needed wrench or replacement part.

"It sounds like science fiction, but now it’s really possible,’’ says Amit Bandyopadhyay, professor in the School of Mechanical and Materials Engineering at Washington State University.

Bandyopadhyay and a group of colleagues recently published a paper in Rapid Prototyping Journal demonstrating how to print parts using materials from the moon.
 
Approached by NASA
 
Bandyopadhyay and Susmita Bose, professor in the School of Mechanical and Materials Engineering, are well known researchers in the area of three-dimensional printing for creation of bone-like materials for orthopedic implants.

In 2010, researchers from NASA initiated discussion with Bandyopadhyay, asking if the research team might be able to print 3-D objects from moon rock.
 
Because of the tremendous expense of space travel, researchers strive to limit what space ships have to carry. Establishment of a lunar or Martian outpost would require using the materials that are on hand for construction or repairs. That’s where the 3-D fabrication technology might come in.

Three-dimensional fabrication technology, also known as additive manufacturing, allows researchers to produce complex 3-D objects directly from computer-aided design (CAD) models, printing the material layer by layer. In this case, the material is heated using a laser to high temperatures and prints out like melting candle wax to a desired shape.

Simple shapes built
 
To test the idea, NASA researchers provided Bandyopadhyay and Bose with 10 pounds of raw lunar regolith simulant, an imitation moon rock that is used for research purposes.

The WSU researchers were concerned about how the moon rock material - which is made of silicon, aluminum, calcium, iron and magnesium oxides - would melt. But they found it behaved similarly to silica, and they built a few simple shapes.

The researchers are the first to demonstrate the ability to fabricate parts using the moon-like material. They sent their pieces to NASA.
 
"It doesn’t look fantastic, but you can make something out of it,’’ says Bandyopadhyay.
 
Tailoring composition, geometry
 
Using additive manufacturing, the material could also be tailored, the researchers say. If you want a stronger building material, for instance, you could perhaps use some moon rock with earth-based additives.

"The advantage of additive manufacturing is that you can control the composition as well as the geometry,’’ says Bose.

In the future, the researchers hope to show that the lunar material could be used to do remote repairs.

"It is an exciting science fiction story, but maybe we’ll hear about it in the next few years,’’ says Bandyopadhyay. "As long as you can have additive manufacturing set up, you may be able to scoop up and print whatever you want. It’s not that far-fetched.’’
 
The research was supported by a $750,000 W.M. Keck Foundation grant.

For more information, visit: www.mme.wsu.edu

Innovative 3D printing technology from Augsburg-based voxeljet is on display in the newest James Bond film Skyfall – more specifically in the scene when James Bond's car explodes in flames. A total of three Aston Martin DB 5 models were created at the company's service centre. The models double for the now priceless original vehicle from the 1960s in the film's action scenes.

Action scenes in expensive film productions such as a James Bond film must look as realistic as possible. For the model builders working behind the scenes, the high demands of film makers translate into more requirements and detail work. Therefore companies such as Propshop Modelmakers Ltd., which specialises in the production of film props, are always on the look-out for trend-setting manufacturing methods.
    
The fact that the British company selected the 3D printing technology of a German provider is a special honour for the Augsburg company. "Of course only state-of-the-art technology was used for the new James Bond film Skyfall. To be considered a benchmark by the model builders from the Pinewood Studios is evidence of the performance and position of our 3D printing system in terms of global ranking," says voxeljet CEO Dr. Ingo Ederer.

voxeljet is considered a pioneer in the area of 3D printing. At its service centre, which is the largest in Europe, the Augsburg-based company has specialised in the on-demand production of sand moulds for metal casting, as well as plastic moulds and 3D functional moulds. Small-batch and prototype manufacturers in a variety of branches of European industry appreciate the fast and cost-effective manufacture of their casting moulds and 3D models based on CAD data. At the same time, the internationally active company has also made a name for itself as a manufacturer of high-resolution 3D printing systems. voxeljet moulds are very precise and rich in detail – properties that also impressed the British model builders.

Aston Martin from a 3D printer

"Propshop commissioned us to build three plastic models of the Aston Martin DB5. We could have easily printed the legendary sports car in one piece at a scale of 1:3 using our high-end VX4000 printer, which can build moulds and models in dimensions of up to eight cubic metres. But the British model builders were pursuing a different approach. To ensure that the Aston Martin was as true to detail as possible, and for the purpose of integrating numerous functions into the film models, they decided on an assembly consisting of a total of 18 individual components. The entire body is based on a steel frame, almost identical to how vehicles were assembled in the past," says Ederer.

voxeljet started the printing process once the CAD data for all components were available. The models are produced with the layer-wise application of particle material that is glued together with a binding agent. The plastic material PMMA is used for this purpose; it is ideally suited for precisely these types of tasks. The individual components that are made of PMMA feature outstanding attention to detail, but are also very stable and resilient, which means that they are well suited for mechanical post-processing.

Following the unpacking process, which involves the removal of unbound material from the finished components, voxeljet's service centre looked very much like a body shop. A total of 54 individual parts for the three vehicle models, including mudguards, doors, bonnets, roofs and more, now had to be safely packaged and transported to Pinewood Studios near London.

Elaborate detailed work

The model builders at Propshop then meticulously assembled and finished the components, painted them in the original colour and added chrome applications along with realistic-looking bullet holes. The special effects that can be seen in Skyfall confirm the perfection in execution of this work. After the finishing process, it is impossible to distinguish the Aston Martin models made with the voxeljet printer from the original, even in the close-up shots. And: The priceless Aston Martin DB5, which was already used in the first James Bond film exactly 50 years ago, remains unscathed, while one of the elaborately and meticulously constructed models explodes in flames in the film. An expensive crash, since one of the three models was auctioned off by Christie's for almost USD 100,000.

For voxeljet, participating in a James Bond production was of course anything but a normal contract, and it also opened up an entirely new industry for the company: "In addition to the automotive industry, foundries, designers and artists, the film industry represents an entirely new customer base for voxeljet. 3D printing is on the cusp of a great future in the film industry. The technology offers fantastic opportunities, since it is usually much faster, more precise and more economical than classic model construction," says Ederer.

voxeljet specialises in 3D print technology. This globally operating high-tech company is a well-respected manufacturer of 3D print systems that are suitable for industrial applications. At the same time, the company operates one of Europe's largest service centres for the "on-demand production" of moulds and models for metal casting.

For more information, visit: www.voxeljet.com

Published in voxeljet
Start
Prev
1
Page 1 of 7

Copyright © 2014 Prototype Today ®. All rights reserved.

|   Privacy Policy   |   Terms & Conditions   |   About Us   |   Contact Us   |

All trademarks and registered trademarks are the property of their respective owners.