Washington State University

Washington State University (2)

Imagine landing on the moon or Mars, putting rocks through a 3-D printer and making something useful – like a needed wrench or replacement part.

"It sounds like science fiction, but now it’s really possible,’’ says Amit Bandyopadhyay, professor in the School of Mechanical and Materials Engineering at Washington State University.

Bandyopadhyay and a group of colleagues recently published a paper in Rapid Prototyping Journal demonstrating how to print parts using materials from the moon.
 
Approached by NASA
 
Bandyopadhyay and Susmita Bose, professor in the School of Mechanical and Materials Engineering, are well known researchers in the area of three-dimensional printing for creation of bone-like materials for orthopedic implants.

In 2010, researchers from NASA initiated discussion with Bandyopadhyay, asking if the research team might be able to print 3-D objects from moon rock.
 
Because of the tremendous expense of space travel, researchers strive to limit what space ships have to carry. Establishment of a lunar or Martian outpost would require using the materials that are on hand for construction or repairs. That’s where the 3-D fabrication technology might come in.

Three-dimensional fabrication technology, also known as additive manufacturing, allows researchers to produce complex 3-D objects directly from computer-aided design (CAD) models, printing the material layer by layer. In this case, the material is heated using a laser to high temperatures and prints out like melting candle wax to a desired shape.

Simple shapes built
 
To test the idea, NASA researchers provided Bandyopadhyay and Bose with 10 pounds of raw lunar regolith simulant, an imitation moon rock that is used for research purposes.

The WSU researchers were concerned about how the moon rock material - which is made of silicon, aluminum, calcium, iron and magnesium oxides - would melt. But they found it behaved similarly to silica, and they built a few simple shapes.

The researchers are the first to demonstrate the ability to fabricate parts using the moon-like material. They sent their pieces to NASA.
 
"It doesn’t look fantastic, but you can make something out of it,’’ says Bandyopadhyay.
 
Tailoring composition, geometry
 
Using additive manufacturing, the material could also be tailored, the researchers say. If you want a stronger building material, for instance, you could perhaps use some moon rock with earth-based additives.

"The advantage of additive manufacturing is that you can control the composition as well as the geometry,’’ says Bose.

In the future, the researchers hope to show that the lunar material could be used to do remote repairs.

"It is an exciting science fiction story, but maybe we’ll hear about it in the next few years,’’ says Bandyopadhyay. "As long as you can have additive manufacturing set up, you may be able to scoop up and print whatever you want. It’s not that far-fetched.’’
 
The research was supported by a $750,000 W.M. Keck Foundation grant.

For more information, visit: www.mme.wsu.edu

Thursday, 01 December 2011 12:50

3D printer used to make bone-like material

Written by

It looks like bone, it feels like bone, for the most part it acts like bone, and it came off an inkjet printer.

Washington State University researchers have used a 3D printer to create a bone-like material and structure that can be used in orthopedic procedures, dental work and to deliver medicine for treating osteoporosis. Paired with actual bone, it acts as a scaffold for new bone to grow on and ultimately dissolves with no apparent ill effects.

The authors report on successful in vitro tests in the journal Dental Materials and say they’re already seeing promising results with in vivo tests on rats and rabbits. It’s possible that doctors will be able to custom order replacement bone tissue in a few years, said Susmita Bose, co-author and professor in WSU’s School of Mechanical and Materials Engineering.

"If a doctor has a CT scan of a defect, we can convert it to a CAD file and make the scaffold according to the defect,” Bose said.

The material grows out of a four-year interdisciplinary effort involving chemistry, materials science, biology and manufacturing. A main finding of the paper is that the addition of silicon and zinc more than doubled the strength of the main material, calcium phosphate.

The researchers – who include mechanical and materials engineering Professor Amit Bandyopadhyay, doctoral student Gary Fielding and research assistant Solaiman Tarafder - also spent a year optimizing a commercially available ProMetal 3D printer designed to make metal objects.

The printer works by having an inkjet spray a plastic binder over a bed of powder in layers of 20 microns, about half the width of a human hair. Following a computer’s directions, it creates a channeled cylinder the size of a pencil eraser.

After just a week in a medium with immature human bone cells, the scaffold was supporting a network of new bone cells.

The research was funded with a $1.5 million grant from the National Institutes of Health.

For more information, visit: wsutoday.wsu.edu

Photo Credit: Shelly Hanks of WSU Photo Services

Copyright © 2018 Prototype Today ®. All rights reserved.

|   Privacy Policy |   Terms & Conditions |   Contact Us |

All trademarks and registered trademarks are the property of their respective owners.

Additive Manufacturing Today