LayerWise

LayerWise (2)

Motorcyclist Stephen Power was severely injured in an accident near Cardiff, UK. He broke both arms and his right leg was damaged so badly it required a bone graft. Stephen also suffered major injuries to his head and face. He regained consciousness after several months in the hospital.

Consultant maxillofacial surgeon Adrian Sugar explains that a specialist team at the Morriston Hospital in Swansea, UK, successfully dealt with all facial injuries, with the exception of his left cheek and eye socket. The patient’s cheekbone was too far out and his eye was sunk in and dropped. Due to the close proximity of critical and sensitive anatomical structures, the team applied a more accurate expertise approach. This strategy ensured no further damage to his eye in order to maintain his eyesight. The expertise approach entailed the latest 3D computer-aided practices applied by PDR and innovative 3D printing of the titanium implant and fixation plate by LayerWise.

LayerWise manufactured the implant and fixation plate in medical-grade titanium (Ti6Al4V ELI) in accordance with the ISO 13485 standard. “The 3D printing technology mastered by LayerWise is perfectly suited for producing this kind of ultra strong, precise and lightweight titanium implants,” says Peter Mercelis, Managing Director of LayerWise.

“The reconstructive orbital floor plate plays an essential role in the repositioning of the eye in light of the targeted facial symmetry and eye alignment,” explained Romy Ballieux from LayerWise’s Medical Business Unit. “LayerWise produced the floor plate, and polished its upper surface to minimize friction with soft tissues. The floor plate was fixated to the zygomatic bone through the plate’s dedicated slip with attachment holes. The digital 3D printing technology successfully maintained the accuracy of the precise medical imaging data, pre-operative planning and implant design. The 0.1 millimeter (4 mils) geometric accuracy of the floor plate’s freeform surfaces could not be achieved using traditional manufacturing methods.”

Accuracy is even more critical with regard to the fixation plate. This fairly long, slim, curved 3D printed plate requires precise positioning to be able to tie together many fractured bone pieces of the cheek region. A custom-fitting guide was used to fit securely around the anatomy, with slots located to guide the surgeon’s movement when positioning the plate. The fixation plate restored the correct anatomical connection between the frontal, zygomatic and temporal bone. This connection contributed to the successful reconstruction of the patient’s anatomy, providing the best possible facial symmetry.

Ballieux noted: “Dedicated medical engineering specialized in the production aspects of metal 3D printing were key in achieving the impressive facial reconstruction in such a short timespan. The digital process resulted in the 3D printed implant and fixation plate produced in a single manufacturing step in only a couple of hours.”

After his recovery, Stephan Power experiences the results of the surgery as ‘totally life changing’. Instead of using a hat and glasses to mask his injuries, he is now able to do day-to-day things, go and see people, walk in the street, and even go to any public areas. The improved facial symmetry and alignment of his eyes, achieved with the LayerWise implant and fixation plate, clearly made a big difference to the patient. “We are confident that our metal 3D printing technology is capable of improving the quality of life of many more patients,” Ballieux concluded. “The fast-turnaround digital process, from medical imaging up to the finalized 3D printed implants, delivers the required implant geometry and precision to obtain such great facial reconstructions.”

These implants were the result of a close collaboration beween LayerWise specialists and PDR design experts Sean Peel and Dr. Dominic Eggbeer. PDR has a formal collaboration with the Maxillofacial Unit at Morriston Hospital: cartis (Centre for Applied Reconstructive Technologies in Surgery).

LayerWise’s Medical Business Unit aims at providing maximum patient comfort through serial and patient-specific implant manufacturing. The metal Additive Manufacturing (AM) process mastered by LayerWise yields fully anatomic implant shapes offering increased functionality and esthetics as well as improved osseo-integration. LayerWise offers cost-effective manufacturing of orthopedic, cranio-maxillofacial, spinal and dental implants and instruments.

LayerWise also built the world’s first patient-specific lower jaw using metal 3D printing.

For more information, visit: www.layerwise.com/medical

LayerWise applied Additive Manufacturing (AM) to produce an award-winning Titanium total lower jaw implant reconstruction, developed in collaboration with project partners from medical industries and academia. To treat a senior patient’s progressive osteomyelitis of almost the entire lower jawbone, medical specialists and surgeons opted for such a complete patient-specific implant the first time ever. AM technology specialists at LayerWise printed the complex implant design incorporating articulated joints and dedicated features. The reconstruction – post-processed with dental suprastructure provisions, polished joint surfaces and a bioceramic coating – has been implanted successfully. It restored the patient’s facial esthetics and allowed her to regain her speech within hours.

Complex AM implant produced as a single part

LayerWise in Leuven, Belgium, produced the metal implant structure layer by layer using its dedicated metal AM technology. A high-precision laser selectively heats metal powder particles, in order to quickly and fully melt to properly attach to the previous layer without glue or binder liquid. As layers are built successively, AM hardly faces any restrictions to produce the complex lower jaw implant structure. AM is used to print functional implant shapes that otherwise require multiple metalworking steps or even cannot be produced any other way.

The revolutionary patient-specific implant has been developed and produced under supervision of Prof. Dr. Jules Poukens, in collaboration with specialized industrial and academic parties in Belgium and The Netherlands.. Just recently, the innovative implant was granted the “2012 AM-Award” by the Additive Manufacturing Network in Belgium. The jury members of Sirris and VITO praised the fact that AM played a decisive role in the realization of this revolutionary mandible implant.

A giant leap forward in mandibular treatment

Dr. ir. Peter Mercelis, Managing Director of LayerWise: “Besides a successful track record in industrial sectors, metal AM is gaining importance in medical implantology. AM’s freedom of shape allows the most complex freeform geometries to be produced as a single part prior to surgery. As illustrated by the lower jaw reconstruction, patient-specific implants can potentially be applied on a much wider scale than transplantation of human bone structures and soft tissues. The use of such implants yield excellent form and function, speeds up surgery and patient recovery, and reduces the risk for medical complications.”

Prof. Dr. Jules Poukens of the University Hasselt: “The new treatment method is a world premiere because it concerns the first patient-specific implant in replacement of the entire lower jaw. The implant integrates multiple functions, including dimples increasing the surface area, cavities promoting muscle attachment, and sleeves to lead mandible nerves. Furthermore, the mandible implant is equipped to directly insert dental bar and/or bridge implant suprastructures at a later stage. I led the team of surgeons who implanted the AM-produced structure during a surgery of less than four hours at the Orbis Medisch Centrum in Sittard-Geleen. Shortly after waking up from the anesthetics the patient spoke a few words, and the day after the patient was able to speak and swallow normally again.”

LayerWise is one of the top players in metal Additive Manufacturing technology. As an AM technology innovator, LayerWise stretches the limits of metal part performance and manufacturing economics. After gaining recognition across industrial sectors, AM is increasingly being adopted in different medical fields such as dentistry, orthopaedics, maxillofacial and spinal surgery. LayerWise intensively collaborates with academic partners, and heavily invests in research and development to push the boundaries of AM technology.

For more information, visit: www.layerwise.com



Copyright © 2018 Prototype Today ®. All rights reserved.

|   Privacy Policy |   Terms & Conditions |   Contact Us |

All trademarks and registered trademarks are the property of their respective owners.

Additive Manufacturing Today