Polytechnic Institute of New York University

Polytechnic Institute of New York University (2)

A team of engineering students at Polytechnic Institute of New York University (NYU-Poly) won the Judges Innovation Design Award in a NASA contest that challenges college teams to build an efficient digging machine for the moon.

The soil of the moon has minerals that potentially can be mined, but in order to do so, NASA needs a light and efficient digging machine. To construct one, as well as encourage students in science, technology, engineering and mathematics – the STEM subjects – NASA sponsors a contest in which college students build a lunar excavation device called a Lunabot.  Fifty-eight teams competed in NASA’s Third Annual Lunabotics Mining Competition at the Kennedy Space Center in Florida.

Its project also received NYU-Poly’s first Paul Soros Prize for Creative Engineering, named for the alumnus whose engineering changed ports throughout the world.

The main test for the Lunabots was to mine and drop in a bin 10 kilograms (about 22 pounds) of simulated lunar dirt within 10 minutes. Challenges included the abrasive nature of lunar soil, the bot’s weight and team-to-robot communications.

“On the moon, dust eats away at everything,” said team captain Stanislav Rosylakov, who graduated in May in civil engineering and is enrolled at NYU-Poly for graduate school. Poly’s Lunabot had very good dust tolerance, he explained, as all the belts and chains were inside the structural frame. “Our robot was light, which is important because it costs so much to send supplies to the moon,” he said. For communications, NYU-Poly’s was one of the few teams that didn’t use a laptop, instead installing a small microcontroller with a Wi-Fi attachment.  

In addition, most of the teams built bulldozers, the simplest way to dig, while Team Atlas used a track, with scoops as part of the treads. “It could do somersaults, flip forward and get back on its feet,” noted Jessica Aleksandrowicz, from East Rutherford, New Jersey, an electrical engineering major who just finished her junior year.

The team used bright NYU-Poly green for parts, thanks to its 3D printer, a MakerBot Thing-O-Matic. The NYU-Poly students’ bot was festooned with a flag, Statue of Liberty and the Empire State Building. They also made parts for other teams and little rockets for kids who came by their lunapit.

Along with Rosylakov and Aleksandrowicz, Team Atlas included Yusif Nurizade, (Electrical Engineering, BS 2013), who developed the software for wireless communication; Jack Poon (Mechanical Engineering, BS 2012), who engineered the excavation hardware and systems;  Nick Cavaliere (Mechanical Engineering, BS 2012), who engineered the power transmission, manufacturing and overall optimization;  Salvatore DiAngelus (Computer Engineering, BS 2013), who integrated hardware and software for wireless communication and control and worked on the onboard communications; Matthew Izberskiy (Computer Engineering, BS 2015), who engineered the data transfer and graphical user interface for wireless communication and control; and Ryan Caeti (Mechanical Engineering, MS 2012), who integrated hardware and software, engineered network communication and developed the graphical user interface.  In addition to his role of team captain, Rosylakov optimized the craft for the lunar soil conditions.  Aleksandrowicz was in charge of the website, media and fundraising.

The NASA competition also included a social media component, a 20-page paper and outreach. To educate about and promote STEM and space exploration, the NYU-Poly students visited the Urban Assembly Institute of Math and Science for Young Women and The Christa McAuliffe School (I.S. 187), both in Brooklyn.

Atlast succeeded, said the team’s faculty advisor, Alexey Sidelev of the NYU-Poly Department of Civil Engineering, because students “were passionate about what they were doing and devoted a great deal of time to the project. They really worked as a team. They are proud to be engineers.” He added that the judges “said they liked everything about the NYU-Poly robot. The judges were cheering for them! I never saw judges so involved with a team.”

The best part of the competition, team captain Rosylakov added, is that the NYU-Poly students “got to see SpaceX launch! We met astronauts, and they complimented us. A few of us possibly have job offers from NASA.”

The Paul Soros Prize for Creative Engineering is a $10,000 annual prize established through a gift from Paul Soros, who earned his master’s of engineering degree in 1950 from what was then Polytechnic Institute of Brooklyn and served as a trustee from 1977 until 2007. NYU-Poly established the prize this year in recognition of Soros’s creative engineering solutions that improved port operations and his entrepreneurial acumen. The prize will be awarded each year to an individual student or a team from the fields of civil or mechanical engineering for the most innovative design idea or invention.  

Judging the first Paul Soros award were a panel of distinguished engineering faculty and alumni including Konstantinos "Gus"Maimis (’84 CE), vice president and project executive of WTC Memorial & Museum Projects;Jay Shapiro (’77 ME), vice president of Howard I. Shapiro & Associates Consulting Engineers, P.C.; Masoud Ghandehari, NYU-Poly associate professor of civil engineering; and Joseph Borowiec, NYU-Poly industry associate professor of mechanical engineering.

The team received support from Verizon Foundation, Space Exploration Technologies Corporation (SpaceX), BatterySpace and MakerBot.

For more information, visit: www.poly.edu

Researchers at the Polytechnic Institute of New York University (NYU-Poly) have demonstrated the potential to keep millions of tons of toxic waste out of landfills while improving the performance and lowering the cost of some of manufacturing industries' most expensive raw materials such as aluminum and magnesium.

Nikhil Gupta, associate professor of mechanical and aerospace engineering at NYU-Poly's Composites Materials and Mechanics Laboratory, has reported the results of experiments designed to utilize fly ash -- a toxic by-product of coal combustion -- as an additive to create lightweight composite metal foams that can replace solid aluminum and magnesium in some automotive and consumer product applications.

Gupta and collaborators from the University of Wisconsin-Milwaukee published their findings in a recent issue of JOM (Journal of Metals), a publication of The Minerals, Metals & Materials Society.

More than 70 million tons of fly ash are produced by coal power plants in the United States every year, and more than half that amount is dumped in landfills. Fly ash contains hollow particles that, when added to a molten metal such as aluminum, create a porous metal foam that is lighter than solid metal yet absorbs a higher amount of energy under compression. The team tested aluminum and magnesium alloys filled with fly ash at high compression rates -- similar to those experience in high-speed auto accidents -- and found that the lightweight foams absorb more energy than the solid metals.

"Composite metal foams made with fly ash could be seamlessly incorporated into vehicle manufacture with no compromise in performance," said Gupta. "As a starting point, these materials are ideal replacements in automotive parts that aren't load-bearing -- for example, engine and wheel covers and intake manifolds, where the weight and strength of solid metal doesn't provide any benefit -- in fact, it just costs more and weighs more."

Diverting fly ash for use in metal foams has significant environmental and cost-saving benefits. First, it keeps toxic ash out of landfills and preserves the $1 billion spent annually disposing of this waste. Second, manufacturers can reduce their costs by purchasing smaller quantities of expensive metals that take a high environmental toll in mining and production. Lastly, because additions of fly ash make automotive parts lighter in weight, the finished vehicle requires less fuel to operate, leading to further energy and cost-savings for consumers.

Studies have shown that reduction in vehicle weight by 10 percent can lead to an improvement of about 5 percent in fuel economy. With 137 billion gallons of gasoline consumed each year in the United States, this can translate into more than $22 billion in savings at the current gas prices. The JOM reports estimate that replacing 10 percent of solid aluminum with fly ash in a manufacturing application would result in an approximate 8 percent overall weight-savings.

While fly ash itself is available at no cost, companies would need to bear the cost of transporting the material and preparing it for use.

Composite foams made from fly ash could be widely useful outside the automotive industry. Everyday items such as highway and runway signs, park benches, lamp posts, sliding tracks for windows and home accessories like doorknobs could all be made lighter and less expensive through the incorporation of metal foams, according to Gupta. "Look around you -- anywhere you see aluminum or steel, there's an opportunity for these materials," he said.

Research funding was provided by the U.S. Office of Naval Research and the National Science Foundation. The papers, "The Synthesis, Compressive Properties, and Applications of Metal Matrix Syntactic Foams" and "High Strain Rate Compressive Characterization of Aluminum Alloy/Fly Ash Cenosphere Composites," were co-authored by Pradeep K. Rohatgi of the University of Wisconsin-Milwaukee. Dung D. Luong, a doctoral candidate at NYU-Poly, was involved in the research.

Polytechnic Institute of New York University (formerly Polytechnic University), an affiliate of New York University, is a comprehensive school of engineering, applied sciences, technology and research, and is rooted in a 157-year tradition of invention, innovation and entrepreneurship: i-squared-e. The institution, founded in 1854, is the nation's second-oldest private engineering school. In addition to its main campus in New York City at MetroTech Center in downtown Brooklyn, it also offers programs at sites throughout the region and around the globe. Globally, NYU-Poly has programs in Israel, China and is an integral part of NYU's campus in Abu Dhabi. For more information, visit www.poly.edu

Copyright © 2019 Prototype Today ®. All rights reserved.

|   Privacy Policy |   Terms & Conditions |   Contact Us |

All trademarks and registered trademarks are the property of their respective owners.

Additive Manufacturing Today