Kickstarter Campaign Launched to Produce 3D Printed University Mascots

Monster Mascots has discovered a way to combine desktop 3D printing with traditional manufacturing to produce collectible figures in the USA. On January 28, co-founders Natalie Mathis and Quincy Robinson launched a Kickstarter campaign to crowd-fund the first batch of their licensed University of Kentucky Wildcat Monster Mascots.

Robinson has over ten years of experience inventing and sculpting for the toy industry. Using software, Robinson created a negative of each section of the UK Wildcat figure. He then 3D printed each negative section in square blocks on desktop 3D printers. The blocks were taken to a local aluminum sand casting facility, where they were turned into a metal mold.

Originally, the co-creators set out to create the USA-made figures using only traditional manufacturing techniques. "We priced a facility in New York, and the cost of manufacturing them was prohibitive for small quantities," Mathis said. “3D printing the blocks ourselves reduced the cost of the mold by thousands of dollars and enabled us to afford-ably produce small batches of the Wildcat.”

Next, the local rotational molding facility attaches the mold to a large metal disk, puts a plastic powder inside, and rotates the mold. After baking at a high temperature, the UK Wildcat is pulled out, cleaned, and assembled by hand, adding to each figure’s uniqueness.

After the Kickstarter ends on March 3, Monster Mascots plans to continue to acquire licenses from other universities to produce more figures in the series. “We started with UK because Natalie and I are both from Kentucky,” Robinson said. “We hope people love these guys and that eventually we can make other teams' Monster Mascots!”

For more information, visit:

Read 2555 times

Rate this item
(1 Vote)

Copyright © 2019 Prototype Today ®. All rights reserved.

|   Privacy Policy |   Terms & Conditions |   Contact Us |

All trademarks and registered trademarks are the property of their respective owners.

Additive Manufacturing Today