EDAG Unveils 3D Printed Car Body Concept at 2014 Geneva Motor Show

With its latest exhibit, "EDAG GENESIS", EDAG offers a visionary outlook for what might well be the next industrial revolution in automotive development and production. Current advances in additive manufacturing now allow a component, module, or even a complete, one-piece vehicle body to be produced in one single production process.

At the EDAG stand in Geneva, the company will be presenting a futuristic vehicle sculpture "EDAG GENESIS". Using the example of a body structure, the sculpture was designed to demonstrate the revolutionary potential of additive manufacturing including bionic lightweight principles, topological optimisation and load-conforming design strategy.

Our exhibit, "EDAG GENESIS" can be seen as a symbol of the new freedoms that additive manufacturing processes will open up to designers and engineers in development and production. Additive manufacturing will make it possible to come a great deal closer to the construction principles and strategies of nature.

"EDAG GENESIS" is based on the bionic patterns of a turtle, which has a shell that provides protection and cushioning and is part of the animal's bony structure. The shell is similar to a sandwich component, with fine, inlying bone structures that give the shell its strength and stability. In "EDAG GENESIS", the skeleton is more of a metaphor; it is there to ensure not mobility, but passenger safety. The framework calls to mind a naturally developed skeletal frame, the form and structure of which should make one thing perfectly clear: these organic structures cannot be built using conventional tools!

The immense potential of additive manufacturing inspired us to define and analyse the current status quo of the latest technologies, and then assess the extent to which it might be possible to use them in vehicle development and production. What process offers the best prospects for being able to produce structural parts with the required product properties in a single production step, without the use of tools?

A multi-disciplinary team of EDAG designers and specialists from the EDAG Competence Centre for Lightweight Construction took a close look at the potential of a number of promising processes, and discussed them with research and industrial experts. Possible candidates for the situation analysis of additive manufacturing were technologies such as selective laser sintering (SLS), selective laser melting (SLM), stereolithography (SLA), and fused deposition modelling (FDM).

In the assessment, a specially developed evaluation matrix was used to quantify the structural relevance of the technologies. How wide is the range of materials that can be used, and what degree of complexity and lot sizes are involved in producing structural parts? The processes were also assessed and classified with regard to part size, tolerance, ecological performance and manufacturing costs.

Apart from SLM, the generative process already industrially available today, with its portfolio of weldable metals and plastics, a refined FDM process also looks to be a promising candidate for the future-oriented subject of additive manufacturing.

Unlike other technologies, FDM makes it possible for components of almost any size to be produced, as there are no pre-determined space requirements to pose any restrictions. Instead, the structures are generated by having robots apply thermoplastic materials. Complex structures are built up layer by layer in an open space - without any tools or fixtures whatsoever.

Metallic SLM aside, most of the high-performance plastics used in additive manufacturing processes do not yet achieve the strength, stiffness and energy absorption values generally required in the industry. This is remedied in the FDM process by the parallel addition of an endless carbon fibre to the production process. One of the central characteristics of FDM is its potential for the incorporation of fibre reinforcements to systematically increase strength and stiffness.

Even though industrial usage of additive manufacturing processing is still in its infancy, the revolutionary advantages with regard to greater freedom in development and tool-free production make this technology a subject for the future. From today's point of view, the production of components, and in the next stage modules, is certainly feasible. As for the target of using additive manufacturing to produce complete vehicle bodies: there is still a long way to go before this becomes an industrial application, so for the time being, it remains a vision.

For more information, visit: www.edag.de

Read 1427 times

Rate this item
(1 Vote)

Copyright © 2017 Prototype Today ®. All rights reserved.

|   Privacy Policy |   Terms & Conditions |   Contact Us |

All trademarks and registered trademarks are the property of their respective owners.

Additive Manufacturing Today