NASA & Aerojet Rocketdyne Successfully Test 3D Printed Copper Alloy Thrust Chamber Assembly

NASA and Aerojet Rocketdyne, a GenCorp (NYSE:GY) company, successfully completed a series of hot-fire tests on an advanced rocket engine Thrust Chamber Assembly (TCA) using copper alloy additive manufacturing technology. This testing, conducted for the first time in the industry, was done with cooperation between Aerojet Rocketdyne, NASA's Space Technology Mission Directorate Game-Changing Development Program and NASA's Glenn Research Center under a Space Act Agreement.

"This work represents another major milestone in the integrated development and certification of the materials characterization, manufacturing processes, analysis and design-tool technologies that are required to successfully implement Selective Laser Melting for critical rocket engine components," said Jay Littles, director of Advanced Launch Programs at Aerojet Rocketdyne. "Aerojet Rocketdyne continues to expand the development of novel material and design solutions made possible through additive manufacturing, which will result in more efficient engines at lower costs. We are working a range of additive manufacturing implementation paths - from affordability and performance enhancement to legacy products such as the RL10 upper stage engine. We also are applying the technology to next-generation propulsion systems, including the Bantam Engine family, as well as our new large, high performance booster engine, the AR1."

The hot-fire tests used Aerojet Rocketdyne's proprietary Selective Laser Melting copper alloy enhanced heat transfer design chamber, which demonstrated a significant increase in performance over traditional combustion chamber designs and material systems. "In all, NASA and Aerojet Rocketdyne conducted 19 hot-fire tests on four injector and TCA configurations, exploring various mixture ratios and injector operability points. At the conclusion of the tests, the injector and chamber hardware were found to be in excellent condition, and test data correlated with performance predictions," said Lee Ryberg, lead project engineer on Aerojet Rocketdyne's Additive Manufacturing development team.

For more information, visit: www.rocket.com

Read 1431 times

Rate this item
(2 votes)

Copyright © 2017 Prototype Today ®. All rights reserved.

|   Privacy Policy |   Terms & Conditions |   Contact Us |

All trademarks and registered trademarks are the property of their respective owners.

Additive Manufacturing Today