Aerojet Rocketdyne

Aerojet Rocketdyne (7)

Aerojet Rocketdyne, Inc. helped propel the Orbital ATK Cygnus cargo spacecraft on its seventh operational delivery flight under the NASA Commercial Resupply Services contract, transporting supplies and materials to the International Space Station. The flight, Orbital ATK CRS-7, was launched from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V rocket. Aerojet Rocketdyne propulsion included an RL10C-1 upper-stage engine; six helium pressurization tanks; 12 Centaur upper-stage thrusters used for roll, pitch, yaw and settling burns; and 32 MR-106M 7 lbf thrusters aboard the Cygnus.

“Aerojet Rocketdyne has a long history of successfully supporting delivery of payloads to the International Space Station, and we’re thrilled to see that legacy continue with this critical resupply mission,” said Aerojet Rocketdyne CEO and President Eileen Drake. “Congratulations to everyone whose hard work and dedication helped deliver these supplies so astronauts aboard the station can continue to live and carry on their important work in space.”

“This mission could never have been successful without the talented employees who make it happen, including those at our sites in West Palm Beach, Florida, where the RL10C-1 is made; Redmond, Washington, where the thrusters are produced; as well as ARDÉ in Carlstadt, New Jersey, which provides the pressurization tanks,” said Jerry Tarnacki, senior vice president of the Space Business Unit at Aerojet Rocketdyne. “Your commitment to mission success is unparalleled.”

Aerojet Rocketdyne's RL10C-1 upper-stage engine ignited after separation of the first stage to place the payload into orbit, helped by the Centaur Reaction Control System (RCS) thrusters and pressurization tanks. The RL10C-1 delivers 22,890 pounds of thrust to power the Atlas V upper stage, using cryogenic liquid hydrogen and liquid oxygen propellants.

The RL10C-1 was developed from the RL10 family of upper-stage engines, which has accumulated one of the most impressive track records of accomplishments in the history of space propulsion. More than 475 RL10 engines have supported launches over the last 50 years, playing a vital role in placing military, government and commercial satellites into orbit, and powering scientific space probes on every interplanetary mission in our solar system.

The 12 MR-106 RCS thrusters are assembled in four rocket engine modules and provide pitch, yaw and roll control for the Centaur upper stage as well as settling burns prior to firing the RL10C-1 engine. ARDÉ, a subsidiary of Aerojet Rocketdyne based in New Jersey, provides the pressure vessels on the first and second stages of the launch vehicle, as well as one pressure vessel on Cygnus.

Aerojet Rocketdyne was awarded a contract by NASA to restart production of the RS-25 engine for the Space Launch System (SLS), the most powerful rocket in the world and designed for the Journey to Mars.

"SLS is America's next generation heavy lift system," said Julie Van Kleeck, vice president of Advanced Space & Launch Programs at Aerojet Rocketdyne. "This is the rocket that will enable humans to leave low Earth orbit and travel deeper into the solar system, eventually taking humans to Mars."

The $1.16 billion contract, which runs from November 2015 through Sept. 30, 2024, is to restart the production line for the RS-25 engine. These production lines have been significantly improved and made more efficient since the retirement of the space shuttle program.

Aerojet Rocketdyne is the prime contractor for the RS-25, and four of these engines will fly on the bottom of the core stage of the SLS rocket, together producing more than two million pounds of thrust.

The first flight test of the SLS is slated for 2018, and it will be configured for a 70-metric-ton lift capacity and carry an uncrewed Orion spacecraft. As SLS evolves, it will be the most powerful rocket ever built and provide an unprecedented lift capability of 130 metric tons.

"The RS-25 engines designed under this new contract will be expendable with significant affordability improvements over previous versions," added Jim Paulsen, vice president, Program Execution, Advanced Space & Launch Programs at Aerojet Rocketdyne. "This is due to the incorporation of new technologies, such as the introduction of simplified designs; 3-D printing technology called additive manufacturing; and streamlined manufacturing in a modern, state-of-the-art fabrication facility."

The new engines will incorporate simplified, yet highly reliable, designs to reduce manufacturing time and cost. For example, the overall engine is expected to simplify key components with dramatically reduced part count and number of welds. At the same time, the engine is being certified to a higher operational thrust level.

In addition to the design simplification, ongoing Value Stream Mapping (VSM) analyses have identified significant cost and schedule benefits by eliminating inefficiencies, redundancies or waste in the production process flow. VSMs were proven effective during the shuttle program and those lessons learned are being applied to the RS-25 restart.

Aerojet Rocketdyne hosted a ribbon cutting ceremony attended by more than 300 people, including local dignitaries, suppliers, customers, company leaders and employees. The event celebrated the company's completion of a $140 million infrastructure improvement project that has increased operating efficiency, reduced costs and positioned the company to bring new programs to the Los Angeles facility.

"Over the past 11 years, our Los Angeles site has undergone a complex construction project focused on creating a world-class facility capable of manufacturing large liquid rocket engines," said Aerojet Rocketdyne CEO and President Eileen Drake. "With the completion of this project, Aerojet Rocketdyne has a premiere propulsion and innovation center to design and build rocket engines. With this newly completed facility, coupled with our technical expertise, we will now be able to build the engines that will take astronauts to Mars and continue our leadership in launching the nation's most critical and valuable national security assets."

The Los Angeles site is Aerojet Rocketdyne's center of excellence for large liquid rocket engines, where it currently manufactures the RS-68 engine components for United Launch Alliance's Delta IV launch vehicle; adapts the RS-25 engine for the Space Launch System, America's next generation heavy lift launch vehicle; builds missile defense propulsion; and most recently, it has become the design center for the AR1 engine, which the company is developing to replace the Russian-made RD-180 engine on the Atlas V launch vehicle.

"This investment demonstrates our ongoing commitment toward innovation and the next generation of world-leading propulsion systems, such as the RS-25 and AR1 advanced liquid rocket engines," added Drake. "Aerojet Rocketdyne has been the go-to provider of U.S. propulsion systems for the last 70 years and RS-25 and AR1 will continue that legacy."

The RS-25 and AR1 engines are examples of capitalizing on proven, heritage systems to enable space exploration for generations to come and answer the urgent needs of national security. Aerojet Rocketdyne has been working on the RS-25 engines since they originally flew on the space shuttle. Four of these engines will fly at the base of the core stage for the Space Launch System, which is the rocket that will eventually take humans to Mars. The company is also currently building the AR1 engine to address the nation's need to end the country's reliance on Russia to launch national security space assets. The AR1 is the logical choice to minimize risk, cost and address the schedule needs of the country to have an American engine ready for 2019.

The project included the construction of a new 24,000-square-foot Component Test Center that provides unique structural, vibration, pressure, water flow and spin test capabilities; a new 20,000-square-foot nozzle assembly and fabrication center that includes a one-of-a-kind furnace that is capable of brazing the nozzle for the RS-25 engine; and a new 11,000-square-foot metallic and non-metallic materials testing lab.

For more information, visit: www.AerojetRocketdyne.com

Aerojet Rocketdyne has recently completed a successful series of hot-fire tests of key additively manufactured components for its AR1 booster engine at its Sacramento test facility. The testing of the main injector elements represents another important milestone in the development of the AR1 engine and the company's commitment to having a certified engine in production in 2019.

The AR1 is a 500,000 lbf thrust-class liquid oxygen/kerosene booster engine currently in development as an American-made alternative to engines such as the foreign-supplied RD-180. The 2015 National Defense Authorization Act calls for the Russian-built RD-180 to be replaced by an American-made alternative for national security space launches by 2019. Started in 2014, and building off a strong base of past oxygen-rich, staged combustion experience attained through decades of technology development programs as well as our recent AFRL Hydrocarbon Boost Technology Demonstration and the NASA Advanced Booster Engineering Demonstration/Risk Reduction program, the AR1 program is an aggressive effort aimed at delivering a flight-qualified engine in 2019. A similar development timeline was accomplished by Aerojet Rocketdyne on the commercially-developed RS-68 booster engine.

"We believe the AR1 is the best, most affordable option to eliminate U.S. dependence on foreign sources of propulsion while maintaining assured access to space for our nation's critical national security and civil space assets," said Linda Cova, executive director of Hydrocarbon Engine Programs at Aerojet Rocketdyne. The AR1 is designed to integrate with the Atlas V launch vehicle, as well as provide a versatile propulsion solution for multiple current and future launch vehicle applications. "When you consider the minimal changes to the Atlas V launch vehicle, launch pad and related infrastructure that are required with an AR1 solution, this approach is clearly the best path toward finding a replacement for the RD-180 and meeting the launch needs of our nation," said Cova. "We look forward to working with the U.S. government in a competitive procurement environment to bring this engine to market."

The development of AR1 is currently being funded by Aerojet Rocketdyne with assistance from United Launch Alliance (ULA), with engine certification targeted for 2019. The cooperative development of AR1 represents the continuation of a long-standing relationship the companies have had in supporting U.S. launch requirements. Aerojet Rocketdyne and ULA continue to work to reduce costs of propulsion systems that support the Atlas and Delta launch vehicles such as the RS-68A, RL10 and AJ-60A, while maintaining demonstrated 100 percent mission success.

"Aerojet Rocketdyne is committed to delivering an RD-180 replacement by 2019, which is why the company is investing in the engine and inviting the Air Force, ULA and other key stakeholders to all major reviews so that engine certification can occur in parallel," added Cova.

Work on the AR1 full-scale design has been progressing steadily with the team achieving significant milestones over the past months, including the completion of a System Requirements Review, full-scale single-element main injector hot-fire testing, subscale preburner testing and turbopump inducer testing.

The single-element main injector hot-fire tests were conducted to evaluate various main injector element designs and fabrication methods. Several injectors were fabricated using Selective Laser Melting (SLM), a form of additive manufacturing. Additive manufacturing, also known as 3D printing, enables the rapid production of complex engine components at a fraction of the cost of those produced using traditional manufacturing techniques. Aerojet Rocketdyne has invested heavily in developing SLM capabilities for application to its rocket engines. Tested in excess of 2,000 psi, Aerojet Rocketdyne believes the AR1 single-element hot-fire tests represent the highest pressure hot-fire test of an additively-manufactured part in a rocket engine application. In the main injector alone, additive manufacturing offers the potential for a nine month reduction in part lead times, and a 70 percent reduction in cost.

Completion of a vehicle-level system concept review and a main propulsion system Preliminary Design Review are planned major milestones for 2015.

For more information, visit: www.rocket.com/ar1-booster-engine

Aerojet Rocketdyne, a GenCorp (NYSE:GY) company, has successfully completed a hot-fire test of its MPS-120™ CubeSat High-Impulse Adaptable Modular Propulsion System™ (CHAMPS™). The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief Technologist's Game Changing Opportunities in Technology Development and awarded out of NASA's Armstrong Flight Research Center. The test was conducted in Redmond, Washington.

"Aerojet Rocketdyne continues to push the envelope with both the development and application of 3-D printed technologies, and this successful test opens a new paradigm of possibilities that is not constrained by the limits of traditional manufacturing techniques," said Julie Van Kleeck, vice president of Space Advanced Programs at Aerojet Rocketdyne.

"The MPS-120 hot-fire test is a significant milestone in demonstrating our game-changing propulsion solution, which will make many new CubeSat missions possible," said Christian Carpenter, MPS-120 program manager. "We look forward to identifying customers to demonstrate the technology on an inaugural space flight."

The MPS-120 contains four miniature rocket engines and feed system components, as well as a 3D-printed titanium piston, propellant tank and pressurant tank. The MPS-120 is designed to be compatible with both proven hydrazine propellant and emerging AF-M315E green propellant. The system is upgradable to the MPS-130™ green propellant version through a simple swap of the rocket engines. The entire system fits into a chassis about the size of a coffee cup.

"Demonstrating the speed at which we can manufacture, assemble and test a system like this is a testament to the impact that proper infusion of additive manufacturing and focused teamwork can have on a product," said Ethan Lorimor, MPS-120 project engineer at Aerojet Rocketdyne. "The demonstration proved that the system could be manufactured quickly, with the 3D printing taking only one week and system assembly taking only two days."

The MPS-120 demonstrated more than five times the required throughput on the engine and several full expulsions on the propellant tank. This demonstration test brought the system to Technology Readiness Level 6 and a Manufacturing Readiness Level 6. The next step in the MPS-120 product development is to qualify the unit and fly it in space.

This application of Additive Manufacturing (AM) is one example of Aerojet Rocketdyne's numerous efforts to apply existing AM techniques. It's a fully integrated cross-discipline effort ranging from basic process development to material characterization. The application also uses rigorous component and system level validation, enabling the benefits of AM with the reliability expected of traditional Aerojet Rocketdyne systems.

While the MPS-120 is Aerojet Rocketdyne's first 3D-printed integrated propulsion system, the company has previously conducted several successful hot-fire tests on 3D-printed components and engines. Those tests include an advanced rocket engine Thrust Chamber Assembly using copper alloy AM technology in October 2014; a series of tests on a Bantam demonstration engine built entirely with AM in June 2014; and a series of tests in July 2013 on a liquid-oxygen/gaseous hydrogen rocket injector assembly designed specifically for additive manufacturing.

For more information, visit: www.rocket.com/cubesat/mps-120

NASA and Aerojet Rocketdyne, a GenCorp (NYSE:GY) company, successfully completed a series of hot-fire tests on an advanced rocket engine Thrust Chamber Assembly (TCA) using copper alloy additive manufacturing technology. This testing, conducted for the first time in the industry, was done with cooperation between Aerojet Rocketdyne, NASA's Space Technology Mission Directorate Game-Changing Development Program and NASA's Glenn Research Center under a Space Act Agreement.

"This work represents another major milestone in the integrated development and certification of the materials characterization, manufacturing processes, analysis and design-tool technologies that are required to successfully implement Selective Laser Melting for critical rocket engine components," said Jay Littles, director of Advanced Launch Programs at Aerojet Rocketdyne. "Aerojet Rocketdyne continues to expand the development of novel material and design solutions made possible through additive manufacturing, which will result in more efficient engines at lower costs. We are working a range of additive manufacturing implementation paths - from affordability and performance enhancement to legacy products such as the RL10 upper stage engine. We also are applying the technology to next-generation propulsion systems, including the Bantam Engine family, as well as our new large, high performance booster engine, the AR1."

The hot-fire tests used Aerojet Rocketdyne's proprietary Selective Laser Melting copper alloy enhanced heat transfer design chamber, which demonstrated a significant increase in performance over traditional combustion chamber designs and material systems. "In all, NASA and Aerojet Rocketdyne conducted 19 hot-fire tests on four injector and TCA configurations, exploring various mixture ratios and injector operability points. At the conclusion of the tests, the injector and chamber hardware were found to be in excellent condition, and test data correlated with performance predictions," said Lee Ryberg, lead project engineer on Aerojet Rocketdyne's Additive Manufacturing development team.

For more information, visit: www.rocket.com

Aerojet Rocketdyne, a GenCorp (NYSE: GY) company, was recently awarded a contract by Wright-Patterson Air Force Base through the Defense Production Act Title III Office for large-scale additive manufacturing development and demonstration. The contract will secure multiple large selective laser melting machines to develop liquid rocket engine applications for national security space launch services. Aerojet Rocketdyne and its subcontractors will design and develop larger scale parts to be converted from conventional manufacturing to additive manufacturing (3D printing).

“Our liquid rocket engines have been used for half a century and our products are highly efficient and complex with a safety and reliability record that is unparalleled,” said Jeff Haynes, program manager of Additive Manufacturing at Aerojet Rocketdyne. “Incremental manufacturing advances have been applied over the history of these programs with great success. Additive manufacturing shifts these advances into high gear and ultimately transforms how these engines are produced.”

“We have developed and successfully demonstrated additive-manufactured hardware over the last four years but the machines have been limited in size to 10-inch cubes,” said Steve Bouley, vice president of Space Launch Systems at Aerojet Rocketdyne. “These next generation systems are about six times larger, enabling more options for our rocket engine components. We are extremely honored to have received this contract, and foresee the day when additive-manufactured engines are used to boost and place important payloads into orbit. The end result will be a more efficient, cost-effective engine.”

Under the contract, Aerojet Rocketdyne will demonstrate three different alloys with these larger additive manufacturing machines to include nickel, copper and aluminum alloys. Parts ranging from simple, large ducts to complex heat exchangers are planned to be demonstrated in full scale. The program scope is expected to replace the need for castings, forgings, plating, machining, brazing and welding.

Aerojet Rocketdyne is a world-recognized aerospace and defense leader providing propulsion and energetics to the space, missile defense and strategic systems, tactical systems and armaments areas, in support of domestic and international markets. GenCorp is a diversified company that provides innovative solutions that create value for its customers in the aerospace and defense, and real estate markets.

For more information, visit: www.Rocket.com

Copyright © 2017 Prototype Today ®. All rights reserved.

|   Privacy Policy |   Terms & Conditions |   Contact Us |

All trademarks and registered trademarks are the property of their respective owners.

Additive Manufacturing Today